Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(4)2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38498487

RESUMO

Variations in the petal color of Brassica napus are crucial for ornamental value, but the controlled loci for breeding remain to be unraveled. Here, we report a candidate locus, AGR-FC.C3, having conducted a bulked segregant analysis on a segregating population with different petal colors. Our results showed that the locus covers 9.46 Mb of the genome, harboring 951 genes. BnaC03.MYB4, BnaC03.MYB85, BnaC03.MYB73, BnaC03.MYB98, and BnaC03.MYB102 belonging to MYB TFs families that might regulate the petal color were observed. Next, a bulk RNA sequencing of white and orange-yellow petals on three development stages was performed to further identify the possible governed genes. The results revealed a total of 51 genes by overlapping the transcriptome data and the bulked segregant analysis data, and it was found that the expression of BnaC03.CCD4 was significantly up-regulated in the white petals at three development stages. Then, several novel candidate genes such as BnaC03.ENDO3, BnaC03.T22F8.180, BnaC03.F15C21.8, BnaC03.Q8GSI6, BnaC03.LSD1, BnaC03.MAP1Da, BnaC03.MAP1Db, and BnaC03G0739700ZS putative to controlling the petal color were identified through deeper analysis. Furthermo re, we have developed two molecular markers for the reported functional gene BnaC03.CCD4 to discriminate the white and orange-yellow petal colors. Our results provided a novel locus for breeding rapeseed with multi-color petals.

2.
Small ; 20(10): e2306095, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37903361

RESUMO

Seasonal influenza still greatly threatens public health worldwide, leading to significant morbidity and mortality. Antiviral medications for influenza treatment are limited and accompanied by increased drug resistance. In severe influenza virus infection, hyperinflammation and hypoxia may be the significant threats associated with mortality, so the development of effective therapeutic methods to alleviate excessive inflammation while reducing viral damage is highly pursued. Here, a multifunctional MOF-based nanohybrid of Cu─TCPP@Mn3 O4 as a novel drug against influenza A virus infection (MOF = metal-organic framework; TCPP = tetrakis (4-carboxyphenyl) porphyrin) is designed. Cu─TCPP@Mn3 O4 exhibits potent inhibitory capability against influenza A virus infection in vitro and in vivo. The mechanism study reveals that Cu─TCPP@Mn3 O4 inhibits the virus entry by binding to the HA2 subunit of influenza A virus hemagglutinin. In addition, the nanoparticles of Mn3 O4 in Cu─TCPP@Mn3 O4 can scavenge intracellular ROS with O2 generation to downregulate inflammatory factors and effectively inhibit cytokines production. By reconstructing the antioxidant microenvironment, Cu─TCPP@Mn3 O4 features as a promising nanomedicine with anti-inflammatory and anti-viral synergistic effects.


Assuntos
Influenza Humana , Nanopartículas , Humanos , Espécies Reativas de Oxigênio , Inflamação/tratamento farmacológico , Antivirais/farmacologia , Antivirais/uso terapêutico
3.
Antioxidants (Basel) ; 12(2)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36829913

RESUMO

Influenza A virus infection induces the production of excessive reactive oxygen species (ROS). Overproduction of ROS can overwhelm the antioxidant defense system, leading to increasing intensive oxidative stress. However, antioxidant defense against oxidative damage induced by influenza A virus infection, and in particular the significance of the SOD3 response in the pathogenesis of influenza virus infection, has not been well characterized. Here, we investigated the potential role of SOD3 in resistance to influenza A virus infection. In this study, SOD3, as an important antioxidant enzyme, was shown to be highly elevated in A549 cells following influenza A virus infection. Furthermore, inhibition of SOD3 impacted viral replication and virulence. We found that SOD3 disrupts IAV replication by impairing the synthesis of vRNA, whereas it did not affect viral ribonucleoprotein nuclear export. In addition, overexpression of SOD3 greatly reduced the levels of ROS caused by influenza A virus infection, regulated the inflammatory response to virus infection by inhibiting the phosphorylation of p65 of the NF-κB signaling pathway, and inhibited virus-induced apoptosis to a certain extent. Taken together, these findings indicate that SOD3 is actively involved in influenza A virus replication. Pharmacological modulation or targeting of SOD3 may pave the way for a novel therapeutic approach to combating influenza A virus infection.

4.
Bioorg Chem ; 132: 106357, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36642018

RESUMO

Guided by Global Natural Products Social molecular networking, 14 new p-terphenyl derivatives, asperterphenyls A-N (1-14), together with 20 known p-terphenyl derivatives (15-34), were obtained from a sponge derived fungus Aspergillus sp. SCSIO41315. Among them, new compounds 2-8 and 15-17 were ten pairs of enantiomers. Comprehensive methods such as chiral-phase HPLC analysis, ECD calculations and X-ray diffraction analysis were applied to determine the absolute configurations. Asperterphenyls B (2) and C (3) represented the first reported natural p-terphenyl derivatives possessing a dicarboxylic acid system. Asperterphenyl A (1) displayed neuraminidase inhibitory activity with an IC50 value of 1.77 ± 0.53 µM and could efficiently inhibit infection of multiple strains of H1N1 with IC50 values from 0.67 ± 0.28 to 1.48 ± 0.60 µM through decreasing viral plaque formation in a dose-dependent manner, which suggested that asperterphenyl A (1) might be exploited as a potential antiviral compound in the pharmaceutical fields.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Compostos de Terfenil , Neuraminidase , Fungos , Aspergillus , Cristalografia por Raios X , Compostos de Terfenil/farmacologia , Estrutura Molecular
5.
Viruses ; 14(12)2022 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-36560742

RESUMO

Influenza virus infections and the continuing spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are global public health concerns. As there are limited therapeutic options available in clinical practice, the rapid development of safe, effective and globally available antiviral drugs is crucial. Drug repurposing is a therapeutic strategy used in treatments for newly emerging and re-emerging infectious diseases. It has recently been shown that the voltage-dependent Ca2+ channel Cav1.2 is critical for influenza A virus entry, providing a potential target for antiviral strategies. Nisoldipine, a selective Ca2+ channel inhibitor, is commonly used in the treatment of hypertension. Here, we assessed the antiviral potential of nisoldipine against the influenza A virus and explored the mechanism of action of this compound. We found that nisoldipine treatment could potently inhibit infection with multiple influenza A virus strains. Mechanistic studies further revealed that nisoldipine impaired the internalization of the influenza virus into host cells. Overall, our findings demonstrate that nisoldipine exerts antiviral effects against influenza A virus infection and could serve as a lead compound in the design and development of new antivirals.


Assuntos
COVID-19 , Vírus da Influenza A , Influenza Humana , Humanos , Influenza Humana/tratamento farmacológico , Internalização do Vírus , SARS-CoV-2 , Nisoldipino/farmacologia , Nisoldipino/uso terapêutico , Antivirais/farmacologia , Antivirais/uso terapêutico
6.
J Nat Prod ; 85(9): 2142-2148, 2022 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-36040315

RESUMO

Four new cyclic diarylheptanoids, casuarinols A-C (1-3) and casuarinolide A (4), together with six known ones (5-10), were isolated from the roots of Casuarina equisetifolia. Structures were elucidated by extensive spectroscopic analysis, theoretical conformational, and electronic circular dichroism analyses. Casuarinol C (3) is a novel cyclic diarylheptanoid-aldehyde adduct. Casuarinolide A (4) represents the first structure of a seco-cyclic diarylheptanoid. Compounds 1-9 were evaluated for their anti-influenza A virus (IAV) activity against A/WSN/33 (H1N1). (-)-(M)-11-Oxo-3,12R,17-trihydroxy-9-ene-[7,0]-metacyclophane (5) displayed significant anti-IAV activity with an IC50 value of 8.64 ± 2.49 µM and a CC50 higher than 100 µM.


Assuntos
Diarileptanoides , Vírus da Influenza A Subtipo H1N1 , Raízes de Plantas , Aldeídos/química , Diarileptanoides/química , Diarileptanoides/isolamento & purificação , Diarileptanoides/farmacologia , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Estrutura Molecular , Raízes de Plantas/química
7.
Front Cell Infect Microbiol ; 12: 839625, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35573779

RESUMO

Tumor necrosis factor receptor-associated factor 3 (TRAF3) is one of the intracellular adaptor proteins for the innate immune response, which is involved in signaling regulation in various cellular processes, including the immune responses defending against invading pathogens. However, the defense mechanism of TRAF3 against influenza virus infection remains elusive. In this study, we found that TRAF3 could positively regulate innate antiviral response. Overexpression of TRAF3 significantly enhanced virus-induced IRF3 activation, IFN-ß production, and antiviral response, while TRAF3 knockdown promoted influenza A virus replication. Moreover, we clarified that inhibiting ubiquitinated degradation of TRAF3 was associated with anti-influenza effect, thereby facilitating antiviral immunity upon influenza A virus infection. We further demonstrated the key domains of TRAF3 involved in anti-influenza effect. Taken together, these results suggested that TRAF3 performs a vital role in host defense against influenza A virus infection by the type-I IFN signaling pathway. Our findings provide insights into the development of drugs to prevent TRAF3 degradation, which could be a novel therapeutic approach for treatment of influenza A virus infection.


Assuntos
Vírus da Influenza A , Influenza Humana , Antivirais , Células HEK293 , Humanos , Imunidade Inata , Vírus da Influenza A/fisiologia , Fator 3 Associado a Receptor de TNF/genética , Fator 3 Associado a Receptor de TNF/metabolismo
8.
Phytother Res ; 35(5): 2797-2806, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33484023

RESUMO

Influenza A virus remains a major threat to public health worldwide after its first pandemic. Scientists keep searching novel anti-influenza drugs, of which natural products present to be an important source. Myricetin, a natural flavonol compound, which exists in many edible plants, which has a wide range of biological activities, but its anti-influenza A virus activity is ambiguous. This study aims to evaluate the anti-influenza activity of myricetin and elucidate its underlying mechanism. Our results demonstrated that myricetin could significantly inhibit influenza A virus replication, reduce viral polymerase activity via selective inhibition of viral PB2 subunit, and the production of inflammatory cytokines by inhibiting TLR3 signaling pathway. The binding affinity analysis and the result of molecular docking revealed that myricetin interacted with the PB2 cap-binding pocket of influenza A virus. The above results suggested myricetin could exhibit anti-influenza virus activity with low cytotoxicity as well, and myricetin had low toxicity in BALB/c mice in vivo. Results from this study highlighted myricetin could be considered as a promising anti-influenza virus agent with dual inhibition profile. Furthermore, the compound with similar structure would provide a new option for the development of novel inhibitors against influenza A virus.

9.
Nat Prod Res ; 22(7): 628-32, 2008 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-18569702

RESUMO

A new dibenzofuran named 1,2,4-trimethyl-7,8-dimethoxy-dibenzofuran (1), together with seven known compounds, euparin (2), 2,5-diacetyl-6-hydroxy-benzofuran (3), 2-acetyl-5,6-dimethoxy-benzofuran (4), gummosogenin (5), lupeol (6), stigmasterol (7) and (E)-2,5-dihydroxy-cinnamic acid (8), were isolated from the roots of Ligularia caloxantha, a Chinese medicinal plant. The structures of the compounds were elucidated by spectroscopic methods.


Assuntos
Asteraceae/química , Benzofuranos/isolamento & purificação , Medicamentos de Ervas Chinesas/química , Benzofuranos/química , Estrutura Molecular , Raízes de Plantas/química
10.
Planta Med ; 71(12): 1128-33, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16395649

RESUMO

Nineteen compounds isolated from Ranunculus sieboldii and Ranunculus sceleratus were tested for inhibitory effects on hepatitis B virus (HBV) and Herpes simplex virus type-1 (HSV-1). The results showed that apigenin 4'- O- alpha-rhamnopyranoside, apigenin 7- O- beta-glucopyranosyl-4'- O- alpha-rhamnopyranoside, tricin 7- O- beta-glucopyranoside, tricin, and isoscopoletin possessed inhibitory activity against HBV replication. Protocatechuyl aldehyde exhibited an inhibiting activity on HSV-1 replication. It is therefore suggested that further investigations on these bioactive compounds might be needed to discover and develop new antiviral agents.


Assuntos
Antivirais/farmacologia , Flavonoides/química , Flavonoides/farmacologia , Ranunculus/química , Antivirais/química , Linhagem Celular , DNA Mitocondrial , Herpesvirus Humano 1/efeitos dos fármacos , Herpesvirus Humano 1/fisiologia , Humanos , Concentração Inibidora 50 , Estrutura Molecular , Fitoterapia , Replicação Viral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...