Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.600
Filtrar
1.
J Environ Sci (China) ; 147: 342-358, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39003052

RESUMO

Secondary iron-sulfate minerals such as jarosite, which are easily formed in acid mine drainage, play an important role in controlling metal mobility. In this work, the typical iron-oxidizing bacterium Acidithiobacillus ferrooxidans ATCC 23270 was selected to synthesize jarosite in the presence of antimony ions, during which the solution behavior, synthetic product composition, and bacterial metabolism were studied. The results show that in the presence of Sb(V), Fe2+ was rapidly oxidized to Fe3+ by A. ferrooxidans and Sb(V) had no obvious effect on the biooxidation of Fe2+ under the current experimental conditions. The presence of Sb(III) inhibited bacterial growth and Fe2+ oxidation. For the group with Sb(III), products with amorphous phases were formed 72 hr later, which were mainly ferrous sulfate and pentavalent antimony oxide, and the amorphous precursor was finally transformed into a more stable crystal phase. For the group with Sb(V), the morphology and structure of jarosite were changed in comparison with those without Sb. The biomineralization process was accompanied by the removal of 94% Sb(V) to form jarosite containing the Fe-Sb-O complex. Comparative transcriptome analysis shows differential effects of Sb(III) and Sb(V) on bacterial metabolism. The expression levels of functional genes related to cell components were much more downregulated for the group with Sb(III) but much more regulated for that with Sb(V). Notably, cytochrome c and nitrogen fixation-relevant genes for the A.f_Fe2+_Sb(III) group were enhanced significantly, indicating their role in Sb(III) resistance. This study is of great value for the development of antimony pollution control and remediation technology.


Assuntos
Acidithiobacillus , Antimônio , Sulfatos , Acidithiobacillus/metabolismo , Acidithiobacillus/efeitos dos fármacos , Sulfatos/metabolismo , Compostos Férricos , Oxirredução , Mineração , Ferro/metabolismo
2.
Orphanet J Rare Dis ; 19(1): 246, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956726

RESUMO

OBJECTIVE: The Center for Neurologic Study Bulbar Function Scale (CNS-BFS) was specifically designed as a self-reported measure of bulbar function. The purpose of this research was to validate the Chinese translation of the CNS-BFSC as an effective measurement for the Chinese population with ALS. METHODS: A total of 111 ALS patients were included in this study. The CNS-BFSC score, three bulbar function items from the ALSFRS-R, and visual analog scale (VAS) score for speech, swallowing and salivation were assessed in the present study. Forty-six ALS patients were retested on the same scale 5-10 days after the first evaluation. RESULTS: The CNS-BFSC sialorrhea, speech and swallowing subscores were separately correlated with the VAS subscores (p < 0.001). The CNS-BFSC total score and sialorrhea and speech scores were significantly correlated with the ALSFRS-R bulbar subscore (p < 0.001). The CNS-BFSC total score and ALSFRS-R bulbar subscale score were highly predictive of a clinician diagnosis of impaired bulbar function (area under the receiver operating characteristic curve, 0.947 and 0.911, respectively; p < 0.001). A cutoff value for the CNS-BFSC total score was selected by maximizing Youden's index; this cutoff score was 33, with 86.4% sensitivity and 93.3% specificity. The CNS-BFSC total score and the sialorrhea, speech and swallowing subscores had good-retest reliability (p > 0.05). The Cronbach's α of the CNS-BFSC was 0.972. CONCLUSION: The Chinese version of the CNS-BFSC has acceptable efficacy and reliability for the assessment of bulbar dysfunction in ALS patients.


Assuntos
Esclerose Lateral Amiotrófica , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Esclerose Lateral Amiotrófica/fisiopatologia
3.
Eur J Med Chem ; 275: 116622, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-38959727

RESUMO

Blockade of the programmed cell death-1 (PD-1)/programmed cell death ligand 1 (PD-L1) pathway is an attractive strategy for immunotherapy, but the clinical application of small molecule PD-1/PD-L1 inhibitors remains unclear. In this work, based on BMS-202 and our previous work YLW-106, a series of compounds with benzo[d]isothiazol structure as scaffold were designed and synthesized. Their inhibitory activity against PD-1/PD-L1 interaction was evaluated by a homogeneous time-resolved fluorescence (HTRF) assay. Among them, LLW-018 (27c) exhibited the most potent inhibitory activity with an IC50 value of 2.61 nM. The cellular level assays demonstrated that LLW-018 exhibited low cytotoxicity against Jurkat T and MDA-MB-231. Further cell-based PD-1/PD-L1 blockade bioassays based on PD-1 NFAT-Luc Jurkat cells and PD-L1 TCR Activator CHO cells indicated that LLW-018 could interrupt PD-1/PD-L1 interaction with an IC50 value of 0.88 µM. Multi-computational methods, including molecular docking, molecular dynamics, MM/GBSA, MM/PBSA, Metadynamics, and QM/MM MD were utilized on PD-L1 dimer complexes, which revealed the binding modes and dissociation process of LLW-018 and C2-symmetric small molecule inhibitor LCH1307. These results suggested that LLW-018 exhibited promising potency as a PD-1/PD-L1 inhibitor for further investigation.


Assuntos
Antígeno B7-H1 , Desenho de Fármacos , Receptor de Morte Celular Programada 1 , Humanos , Antígeno B7-H1/metabolismo , Antígeno B7-H1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/metabolismo , Relação Estrutura-Atividade , Estrutura Molecular , Relação Dose-Resposta a Droga , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/síntese química , Células Jurkat , Simulação de Acoplamento Molecular , Tiazóis/farmacologia , Tiazóis/química , Tiazóis/síntese química , Animais , Benzotiazóis/farmacologia , Benzotiazóis/química , Benzotiazóis/síntese química , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química
4.
Curr Med Sci ; 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38970738

RESUMO

OBJECTIVE: The standardization of warfarin anticoagulant therapy is the key to lifelong treatment for patients after heart valve replacement. The present study explored the possible risk factors for anxiety and depression during the coronavirus disease 2019 (COVID-19) pandemic and analyzed the influence of psychological state on medication safety. METHODS: Eligible patients received a web-based questionnaire survey via the Wenjuanxing platform during outpatient visits. Depression was evaluated by the Self-Rating Depression Scale (SDS). Anxiety was evaluated by the Self-Rating Anxiety Scale (SAS). Medication adherence was evaluated by the Morisky scale. RESULTS: A total of 309 patients (aged 52.2±11.4 years) were included in the present study. The SDS score of all included patients was 36.9±9.4 points, of which 11 (3.6%) patients were diagnosed as having depression. The SAS score of all included patients was 43.1±9.3 points, of which 71 (23%) patients were diagnosed as having anxiety. Seven patients (2.3%) had both anxiety and depression. Logistic regression analysis revealed that only monthly income was an independent influencing factor for depression. Regarding anxiety, patients who underwent repeated operations had a 2.264-fold greater risk, and patients who received combination medication had a 2.140-fold greater risk. More bleeding events and coagulation disorders could be observed in patients with anxiety, depression or both. When anxiety occurred, patients showed worse medication adherence. However, depression had no significant effect on medication adherence. CONCLUSION: During the COVID-19 pandemic, the detection rate of mental illnesses such as anxiety and depression was high, which seriously affected the medication safety of warfarin. Analysis of its influencing factors will provide a reference for further standardized regulation of warfarin anticoagulant therapy after valve replacement.

5.
Angew Chem Int Ed Engl ; : e202408874, 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38972844

RESUMO

Overcoming tumor apoptosis resistance is a major challenge in enhancing cancer therapy. Pyroptosis, a lytic form of programmed cell death (PCD) involving inflammasomes, Gasdermin family proteins, and cysteine proteases, offers potential in cancer treatment. While photodynamic therapy (PDT) can induce pyroptosis by generating reactive oxygen species (ROS) through the activation of photosensitizers (PSs), many PSs lack specific subcellular targets and are limited to the first near-infrared window, potentially reducing treatment effectiveness. Therefore, developing effective, deep-penetrating, organelle-targeted pyroptosis-mediated phototherapy is essential for cancer treatment strategies. Here, we synthesized four molecules with varying benzene ring numbers in thiopyrylium structures to preliminarily explore their photodynamic properties. The near-infrared-II (NIR-II) PS Z1, with a higher benzene ring count, exhibited superior ROS generation and mitochondria-targeting abilities, and a large Stokes shift. Through nano-precipitation method, Z1 nanoparticles (NPs) also demonstrated high ROS generation (especially type-I ROS) upon 808 nm laser irradiation, leading to efficient mitochondria dysfunction and combined pyroptosis and apoptosis. Moreover, they exhibited exceptional tumor-targeting ability via NIR-II fluorescence imaging (NIR-II FI) and photoacoustic imaging (PAI). Furthermore, Z1 NPs-mediated phototherapy effectively inhibited tumor growth with minimal adverse effects. Our findings offer a promising strategy for cancer therapy, warranting further preclinical investigations in PDT.

6.
Sensors (Basel) ; 24(13)2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-39000908

RESUMO

Next-generation communication systems demand the integration of sensing, communication, and power transfer (PT) capabilities, requiring high spectral efficiency, energy efficiency, and low cost while also necessitating robustness in high-speed scenarios. Integrated sensing and communication systems (ISACSs) exhibit the ability to simultaneously perform communication and sensing tasks using a single RF signal, while simultaneous wireless information and power transfer (SWIPT) systems can handle simultaneous information and energy transmission, and orthogonal time frequency space (OTFS) signals are adept at handling high Doppler scenarios. Combining the advantages of these three technologies, a novel cyclic prefix (CP) OTFS-based integrated simultaneous wireless sensing, communication, and power transfer system (ISWSCPTS) framework is proposed in this work. Within the ISWSCPTS, the CP-OTFS matched filter (MF)-based target detection and parameter estimation (MF-TDaPE) algorithm is proposed to endow the system with sensing capabilities. To enhance the system's sensing capability, a waveform design algorithm based on CP-OTFS ambiguity function shaping (AFS) is proposed, which is solved by an iterative method. Furthermore, to maximize the system's sensing performance under communication and PT quality of service (QoS) constraints, a semidefinite relaxation (SDR) beamforming design (SDR-BD) algorithm is proposed, which is solved using through the SDR technique. The simulation results demonstrate that the ISWSCPTS exhibits stronger parameter estimation performance in high-speed scenarios compared to orthogonal frequency division multiplexing (OFDM), the waveform designed by CP-OTFS AFS demonstrates superior interference resilience, and the beamforming designed by SDR-BD strikes a balance in the overall performance of the ISWSCPTS.

7.
Angew Chem Int Ed Engl ; : e202410457, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39004608

RESUMO

Single-atom catalysts have garnered significant attention due to their exceptional atom utilization and unique properties. However, the practical application of these catalysts is often impeded by challenges such as sintering-induced instability and poisoning of isolated atoms due to strong gas adsorption. In this study, we employed the mechanochemical method to insert single Cu atoms into the subsurface of Fe2O3 support. By manipulating the location of single atoms at the surface or subsurface, catalysts with distinct adsorption properties and reaction mechanisms can be achieved. It was observed that the subsurface Cu single atoms in Fe2O3 remained isolated under both oxidation and reduction environments, whereas surface Cu single atoms on Fe2O3 experienced sintering under reduction conditions. The unique properties of these subsurface single-atom catalysts call for innovations and new understandings in catalyst design.

8.
Am J Prev Cardiol ; 19: 100689, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39005754

RESUMO

Objective: Epicardial fat is associated with cardiovascular risk factors and adverse outcomes. However, it is not clear if epicardial fat remains to be a mortality risk when coronary calcium score (CAC) is taken into account. Methods: We studied the 1005 participants from the St. Francis Heart Study who were apparently healthy with CAC scores at 80th percentile or higher for age and gender, randomly assigned to placebo or statin therapy. At baseline, lipid profiles and non-contrast CT images were obtained where the epicardial fat volume was analyzed. Likelihood ratio testing was used to assess the additional prognostic value of epicardial fat to CAC for the risk of all-cause mortality. Results: Increased epicardial fat volume was associated with higher CAC. For each unit increase in lnCAC, the average epicardial fat volume increased by 3.34 mL/m2. After a mean follow-up period of 17 years, 179 (18%) participants died. Increased epicardial fat volume was associated with an adjusted hazard ratio of 1.11 (95% CI: 1.02 to 1.20) predicting all-cause mortality. In the stratified analysis testing strata of epicardial fat and CAC, those with increased epicardial fat and increased CAC had the highest risk of death. Compared with a model containing lnCAC and traditional risk factors, a model additionally containing epicardial fat volume yielded a better model fit (likelihood ratio test p < 0.001). Conclusion: Increased epicardial fat volume is associated with increased all-cause mortality risk. In addition, it portends incremental prognostic value to CAC score in mortality prediction.

9.
BMC Musculoskelet Disord ; 25(1): 530, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38987728

RESUMO

PURPOSE: Few studies have focused on the risk factors leading to postoperative blood transfusion after open reduction and internal fixation (ORIF) of proximal humeral fractures (PHFs) in the elderly. Therefore, we designed this study to explore potential risk factors of blood transfusion after ORIF for PHFs. We have also established a nomogram model to integrate and quantify our research results and give feedback. METHODS: In this study, we retrospectively analyzed the clinical data of elderly PHF patients undergoing ORIF from January 2020 to December 2021. We have established a multivariate regression model and nomograph. The prediction performance and consistency of the model were evaluated by the consistency coefficient and calibration curve, respectively. RESULTS: 162 patients met our inclusion criteria and were included in the final study. The following factors are related to the increased risk of transfusion after ORIF: time to surgery, fibrinogen levels, intraoperative blood loss, and surgical duration. CONCLUSIONS: Our patient-specific transfusion risk calculator uses a robust multivariable model to predict transfusion risk.The resulting nomogram can be used as a screening tool to identify patients with high transfusion risk and provide necessary interventions for these patients (such as preoperative red blood cell mobilization, intraoperative autologous blood transfusion, etc.).


Assuntos
Transfusão de Sangue , Fixação Interna de Fraturas , Nomogramas , Redução Aberta , Fraturas do Ombro , Humanos , Idoso , Feminino , Masculino , Fixação Interna de Fraturas/efeitos adversos , Fixação Interna de Fraturas/métodos , Estudos Retrospectivos , Fraturas do Ombro/cirurgia , Idoso de 80 Anos ou mais , Estudos Transversais , Redução Aberta/efeitos adversos , Redução Aberta/métodos , Fatores de Risco , Medição de Risco , Perda Sanguínea Cirúrgica/prevenção & controle
10.
Biomaterials ; 311: 122699, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38981153

RESUMO

The treatment of osteoporotic bone defects poses a challenge due to the degradation of the skeletal vascular system and the disruption of local bone metabolism within the osteoporotic microenvironment. However, it is feasible to modulate the disrupted local bone metabolism imbalance through enhanced vascularization, a theory termed "vascularization-bone metabolic balance". This study developed a 3D-printed polycaprolactone (PCL) scaffold modified with EPLQLKM and SVVYGLR peptides (PCL-SE). The EPLQLKM peptide attracts bone marrow-derived mesenchymal stem cells (BMSCs), while the SVVYGLR peptide enhances endothelial progenitor cells (EPCs) vascular differentiation, thus regulating bone metabolism and fostering bone regeneration through the paracrine effects of EPCs. Further mechanistic research demonstrated that PCL-SE promoted the vascularization of EPCs, activating the Notch signaling pathway in BMSCs, leading to the upregulation of osteogenesis-related genes and the downregulation of osteoclast-related genes, thereby restoring bone metabolic balance. Furthermore, PCL-SE facilitated the differentiation of EPCs into "H"-type vessels and the recruitment of BMSCs to synergistically enhance osteogenesis, resulting in the regeneration of normal microvessels and bone tissues in cases of femoral condylar bone defects in osteoporotic SD rats. This study suggests that PCL-SE supports in-situ vascularization, remodels bone metabolic translational balance, and offers a promising therapeutic regimen for osteoporotic bone defects.

11.
Ecotoxicol Environ Saf ; 281: 116661, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38954907

RESUMO

OBJECTIVE: Baicalin has antioxidative, antiviral, and anti-inflammatory properties. However, its ability to alleviate oxidative stress (OS) and DNA damage in liver cells exposed to aflatoxin B1 (AFB1), a highly hepatotoxic compound, remains uncertain. In this study, the protective effects of baicalin on AFB1-induced hepatocyte injury and the mechanisms underlying those effects were investigated. METHODS: Stable cell lines expressing CYP3A4 were established using lentiviral vectors to assess oxidative stress levels by conducting assays to determine the content of reactive oxygen species (ROS), malondialdehyde (MDA), and superoxide dismutase (SOD). Additionally, DNA damage was evaluated by 8-hydroxy-2-deoxyguanosine (8-OHdG) and comet assays. Transcriptome sequencing, molecular docking, and in vitro experiments were conducted to determine the mechanisms underlying the effects of baicalin on AFB1-induced hepatocyte injury. In vivo, a rat model of hepatocyte injury induced by AFB1 was used to evaluate the effects of baicalin. RESULTS: In vitro, baicalin significantly attenuated AFB1-induced injury caused due to OS, as determined by a decrease in ROS, MDA, and SOD levels. Baicalin also considerably decreased AFB1-induced DNA damage in hepatocytes. This protective effect of baicalin was found to be closely associated with the TP53-mediated ferroptosis pathway. To elaborate, baicalin physically interacts with P53, leading to the suppression of the expression of GPX4 and SLC7A11, which in turn inhibits ferroptosis. In vivo findings showed that baicalin decreased DNA damage and ferroptosis in AFB1-treated rat liver tissues, as determined by a decrease in the expression of γ-H2AX and an increase in GPX4 and SLC7A11 levels. Overexpression of TP53 weakened the protective effects of baicalin. CONCLUSIONS: Baicalin can alleviate AFB1-induced OS and DNA damage in liver cells via the TP53-mediated ferroptosis pathway. In this study, a theoretical foundation was established for the use of baicalin in protecting the liver from the toxic effects of AFB1.


Assuntos
Aflatoxina B1 , Ferroptose , Flavonoides , Hepatócitos , Proteína Supressora de Tumor p53 , Flavonoides/farmacologia , Aflatoxina B1/toxicidade , Ferroptose/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Animais , Proteína Supressora de Tumor p53/metabolismo , Ratos , Estresse Oxidativo/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Masculino , Substâncias Protetoras/farmacologia , Ratos Sprague-Dawley , Humanos , Espécies Reativas de Oxigênio/metabolismo
12.
Proc Natl Acad Sci U S A ; 121(30): e2405846121, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39012829

RESUMO

High-entropy compounds have been emerging as promising candidates for electrolysis, yet their controllable electrosynthesis strategy remains a formidable challenge because of the ambiguous ionic interaction and codeposition mechanism. Herein, we report a oxygenates directionally induced electrodeposition strategy to construct high-entropy materials with amorphous features, on which the structural evolution from high-entropy phosphide to oxide is confirmed by introducing vanadate, thus realizing the simultaneous optimization of composition and structure. The representative P-CoNiMnWVOx shows excellent bifunctional catalytic performance toward alkaline hydrogen evolution reaction and ethanol oxidation reaction (EOR), with small potentials of -168 mV and 1.38 V at 100 mA cm-2, respectively. In situ spectroscopy illustrates that the electrochemical reconstruction of P-CoNiMnWVOx induces abundant Co-O species as the main catalytic active species for EOR and follows the conversion pathway of the C2 product. Theoretical calculations reveal the optimized electronic structure and adsorption free energy of reaction intermediates on P-CoNiMnWVOx, thereby resulting in a facilitated kinetic process. A membrane-free electrolyzer delivers both high Faradaic efficiencies of acetate and H2 over 95% and superior stability at100 mA cm-2 during 120 h electrolysis. In addition, the unique composition and structural advantages endow P-CoNiMnWVOx with multifunctional catalytic activity and realize multipathway electrosynthesis of formate-coupled hydrogen production.

13.
Toxicon ; 247: 107857, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38996976

RESUMO

Fluoride is a double-edged sword. It was widely used for early caries prevention while excessive intake caused a toxicology effect, affected enamel development, and resulted in dental fluorosis. The study aimed to evaluate the protective effect and mechanism of Epigallocatechin-3-gallate (EGCG) on the apoptosis induced by fluoride in ameloblast-like cells. We observed that NaF triggered apoptotic alterations in cell morphology, excessive NaF arrested cell cycle at the G1, and induced apoptosis by up-regulating Bax and down-regulating Bcl-2. NaF activated the insulin-like growth factor receptor (IGFR), and phosphatidylinositol-3-hydroxylase (p-PI3K), while dose-dependently down-regulating the expression of Forkhead box O1 (FoxO1). EGCG supplements reversed the changes in LS8 morphology, the cell cycle, and apoptosis induced by fluoride. These results indicated that EGCG possesses a protective effect against fluoride toxicity. Furthermore, EGCG suppressed the activation of p-PI3K and the down-regulation of FoxO1 caused by fluoride. Collectively, our findings suggested that EGCG attenuated fluoride-induced apoptosis by inhibiting the PI3K/FoxO1 signaling pathway. EGCG may serve as a new alternative method for dental fluorosis prevention, control, and treatment.

14.
Acta Neurol Belg ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38954167

RESUMO

PURPOSE: To preliminarily investigate the reliability and validity of the Chinese version of the Cerebellar Cognitive Affective Syndrome Scale (CCAS scale) in the cerebellar injury population. METHODS: In this study, 40 patients with cerebellar injury and 39 normal individuals hospitalized in a stroke center were assessed using the Chinese version of the CCAS scale A, MMSE, and PHQ2, and the results were analyzed using content validity, structural validity, internal consistency, inter- rater agreement, and test-retest reliability. RESULTS: The correlation coefficients of semantic fluency, phonemic fluency, category switching, digit span forward, digit span backward, cube, verbal recall, similarities and Go No-Go subscores in the Chinese version of the CCAS scale A were 0.586-0.831 (P ≤ 0.05) with the total score, but there was no significant correlation between the affect and the total score (P = 0.110). The total cognitive score of the Chinese version of the CCAS scale A was correlated with the (r = 0.807, P ≤ 0.01), and the total score of the Chinese version of the CCAS scale A affect was correlated with the total score of PHQ2 (r = 0.884, P ≤ 0.01). The 2 factors were extracted using principal component analysis, and the cumulative variance contribution rate was 59.633%. The factor loadings of each of the corresponding factors were > 0.5, indicating good structural validity of the Chinese version of the CCAS scale A. Cronbach α = 0.827 indicated good internal consistency, and inter-rater reliability (ICC > 0.95) and test-retest reliability (ICC = 0.717-0.895)indicated that the Chinese version of the CCAS scale A had good inter-rater reliability and test-retest reliability. CONCLUSION: The Chinese version of the CCAS scale A has good reliability and validity in the cerebellar injury population and is useful for screening cerebellar cognitive-emotional syndrome.

15.
J Med Chem ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958057

RESUMO

Mycobacterium tuberculosis (Mtb), the infectious agent of tuberculosis (TB), causes over 1.5 million deaths globally every year. Host-directed therapies (HDT) for TB are desirable for their potential to shorten treatment and reduce the development of antibiotic resistance. Previously, we described a modular biomimetic strategy to identify SMIP-30, targeting PPM1A (IC50 = 1.19 µM), a metal-dependent phosphatase exploited by Mtb to survive intracellularly. SMIP-30 restricted the survival of Mtb in macrophages and lungs of infected mice. Herein, we redesigned SMIP-30 to create SMIP-031, which is a more potent inhibitor for PPM1A (IC50 = 180 nM). SMIP-031 efficiently increased the level of phosphorylation of S403-p62 and the expression of LC3B-II to activate autophagy, resulting in the dose-dependent clearance of Mtb in infected macrophages. SMIP-031 possesses a good pharmacokinetic profile and oral bioavailability (F = 74%). In vivo, SMIP-031 is well tolerated up to 50 mg/kg and significantly reduces the bacteria burden in the spleens of infected mice.

16.
Cancer Sci ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992901

RESUMO

The incomplete prediction of prognosis in esophageal squamous cell carcinoma (ESCC) patients is attributed to various therapeutic interventions and complex prognostic factors. Consequently, there is a pressing demand for enhanced predictive biomarkers that can facilitate clinical management and treatment decisions. This study recruited 491 ESCC patients who underwent surgical treatment at Huashan Hospital, Fudan University. We incorporated 14 blood metabolic indicators and identified independent prognostic indicators for overall survival through univariate and multivariate analyses. Subsequently, a metabolism score formula was established based on the biochemical markers. We constructed a nomogram and machine learning models utilizing the metabolism score and clinically significant prognostic features, followed by an evaluation of their predictive accuracy and performance. We identified alkaline phosphatase, free fatty acids, homocysteine, lactate dehydrogenase, and triglycerides as independent prognostic indicators for ESCC. Subsequently, based on these five indicators, we established a metabolism score that serves as an independent prognostic factor in ESCC patients. By utilizing this metabolism score in conjunction with clinical features, a nomogram can precisely predict the prognosis of ESCC patients, achieving an area under the curve (AUC) of 0.89. The random forest (RF) model showed superior predictive ability (AUC = 0.90, accuracy = 86%, Matthews correlation coefficient = 0.55). Finally, we used an RF model with optimal performance to establish an online predictive tool. The metabolism score developed in this study serves as an independent prognostic indicator for ESCC patients.

17.
Br J Pharmacol ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992898

RESUMO

BACKGROUND AND PURPOSE: Colorectal cancer (CRC) ranks second in mortality worldwide and requires effective and affordable remedies. Cyclovirobuxine D (CVB-D) is the main effective component of Huangyangning tablet, an approved traditional patent medicine, which is mainly used for cardiovascular treatment. As a multibioactive natural compound, CVB-D possesses underlying anticancer activities. EXPERIMENTAL APPROACH: Cell viability and clone-forming ability were determined in human CRC lines. Western blot, immunofluorescence assay, transmission electron microscopy and senescence-associated ß-galactosidase (SA-ß-Gal) staining were utilized to investigate cell autophagy and senescence. The molecular mechanisms were explored by virtual prediction and experimental validation. Patient-derived xenograft (PDX), dextran sulfate sodium salt (DSS), and azomethane (AOM)/DSS mouse models were employed for in vivo studies. KEY RESULTS: CVB-D inhibited the growth and development of advanced CRC cells / mice by inducing autophagic and senescent activities through the chaperonin containing TCP1 subunit 3 (CCT3)/yes-associated protein (YAP) axis. CVB-D acted as a promising inhibitor of CCT3 by interacting with its ATP site. In PDX tumours, CVB-D showed potential therapeutic effects by targeting CCT3. Treatment with CVB-D alleviated the mouse model of colitis induced by DSS and attenuated AOM/DSS-induced formation of adenomatous polyps by its action on CCT3. CONCLUSIONS AND IMPLICATIONS: Our study has provided a scientific basis for the suggestion that CVB-D may be recognized as a prospective drug candidate for the therapy of CRC in patients.

19.
Int J Ophthalmol ; 17(7): 1337-1343, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39026904

RESUMO

AIM: To investigate Omicron's impact on clinical presentation of acute primary angle closure (APAC) in China. METHODS: A consecutive case series with historical controls was conducted at Shenzhen Eye Hospital, the largest specialized hospital in Shenzhen, China. Medical records from a two-month period during the Omicron pandemic (December 1, 2022, to January 31, 2023) were compared with records from two control groups (12/2018-1/2019 and 12/2021-1/2022) before pandemic. Patients with APAC were included, and the prevalence of APAC and demographic characteristics in Omicron-infected and non-infected patients were compared. RESULTS: Seventy-one (23.43%) out of 303 patients were diagnosed with APAC in the pandemic cohort, which was 2.98 and 2.61 times higher than that in control cohorts (7.87% in 2019, 8.96% in 2022, P<0.001). The pandemic cohort has significantly higher Omicron-infected rate (78.87% vs 0 vs 0; P<0.001), lower proportion of glaucoma history (16.90% vs 42.86% vs 41.67%, P=0.005), higher surgical rate (95.77% vs 83.33% vs 78.57%, P=0.024), higher total medical costs and larger pupil diameter (5.63±0.15 vs 4.68±0.15 vs 4.69±0.22 mm, P<0.01). In 83% Omicron-infected patients, ocular symptoms appeared within 3d after systemic symptoms onset. In multivariate analysis, Omicron infection (P<0.001) was the only independent predictor of pupil diameter. CONCLUSION: In the Omicron epidemic in China, there is an increase of prevalence and severity of APAC, particularly focusing on the first 3d following infection.

20.
Nature ; 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39020172

RESUMO

Telomerase is intimately associated with stem cells and cancer, because it catalytically elongates telomeres-nucleoprotein caps that protect chromosome ends1. Overexpression of telomerase reverse transcriptase (TERT) enhances the proliferation of cells in a telomere-independent manner2-8, but so far, loss-of-function studies have provided no evidence that TERT has a direct role in stem cell function. In many tissues, homeostasis is shaped by stem cell competition, a process in which stem cells compete on the basis of inherent fitness. Here we show that conditional deletion of Tert in the spermatogonial stem cell (SSC)-containing population in mice markedly impairs competitive clone formation. Using lineage tracing from the Tert locus, we find that TERT-expressing SSCs yield long-lived clones, but that clonal inactivation of TERT promotes stem cell differentiation and a genome-wide reduction in open chromatin. This role for TERT in competitive clone formation occurs independently of both its reverse transcriptase activity and the canonical telomerase complex. Inactivation of TERT causes reduced activity of the MYC oncogene, and transgenic expression of MYC in the TERT-deleted pool of SSCs efficiently rescues clone formation. Together, these data reveal a catalytic-activity-independent requirement for TERT in enhancing stem cell competition, uncover a genetic connection between TERT and MYC and suggest that a selective advantage for stem cells with high levels of TERT contributes to telomere elongation in the male germline during homeostasis and ageing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...