Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Res ; 222: 118876, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35914504

RESUMO

Sewage sludge is an important source for microplastics (MPs) entering into environment. Hydrothermal treatment has been considered a promising method for reducing MPs in sewage sludge. However, MPs degradation characteristics and mechanism during sludge hydrothermal treatment are not fully understood. In the study, three common MPs, i.e. polyethylene (PE), polystyrene (PS) and polyethylene terephthalate (PET) were used to explore the effect of hydrothermal treatment on the properties of MPs in sewage sludge. The hydrothermally-treated (HT) MPs in sludge feature more broken and rougher surfaces with higher O-containing functional groups in the sludge than those in water. The dissolved leachates from the HT MPs in the sludge show higher concentrations than the counterparts, implying that certain components in sludge serve to promote the MP degradation and leaching during hydrothermal treatment. Three model components in the sludge, including protein, carbohydrate, and SiO2, were further investigated for their individual effects on the hydrothermal degradation of MPs. Compared with those in water, the HT MPs in the protein and carbohydrate solutions show greater changes in the surface micro-morphologies and carbonyl index, and generate more leachates. However, the SiO2 solution results in similar difference in the MPs changes with the water solution, indicating that organic components of sludge play a more critical role in the enhanced MPs hydrothermal degradation than inorganic components. The HT PET leads to more pronounced changes in the physicochemical and leaching characteristics than the HT PE and PS, possibly due to more susceptible hydrolysis of the PET. Hydrothermal degradation of the MPs is found to be mainly driven by depolymerization of the polymer and leaching of the plastics additives. The findings imply that the sludge organic components significantly promote the MPs aging and degradation during hydrothermal treatment, and potential changes in the environmental risk of the treated MPs upon their subsequent land applications.


Assuntos
Microplásticos , Esgotos , Carboidratos , Plásticos , Polietileno , Esgotos/química , Dióxido de Silício , Água
2.
Water Res ; 171: 115379, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31869692

RESUMO

Sewage sludge is a primary pathway for microplastics (MPs) entering into terrestrial ecosystems. However, a standardized method to analyze MP in sludge is lacking due to its high organic matter. This study investigated the extraction efficiency of six MPs in five solid matrices, i.e. sewage sludge, cattle manure, soil, sediment and silicon dioxide. Results show lower extraction efficiency of 87.2% for MPs in sludge compared with that in other matrices, especially polyethylene terephthalate (PET) (only 27.8%). The possible reason was that the presence of extracellular polymeric substances within the sludge hinders the MPs to float. Therefore, five protocols, i.e. hydrogen peroxide (H2O2), Fenton, nitric acid (HNO3), hydrochloric acid (HCl) and sodium hydroxide (NaOH) were used to pretreat the sludge and optimize the MP extraction. The sludge pretreated by H2O2, Fenton and 1 M of acids had higher MP extraction efficiency than the raw sludge due to higher extraction of the PET. The MP extraction efficiency in the sludge first increased, and subsequently decreased with the soluble chemical oxygen demand (SCOD) content, implying that moderate dissolution of sludge organic matter is beneficial to the MP extraction. Quantitative analysis of the changes in the MP physicochemical characteristics after the pretreatments indicated that polyamide (PA) and PET are not resistant to acid and alkali treatment, respectively. Principal component analysis shows that the effect of pretreatments on the MPs follows a decreasing sequence: alkali > high concentration of acids > low concentration of acids > H2O2 and Fenton. Additionally, the susceptibility of the MPs to the pretreatments follows a decreasing sequence: PET, PA and polymethyl methacrylate (PMMA) > polystyrene (PS) > polyethylene (PE) and polypropylene (PP). The findings supply novel insights into the effect of chemical pretreatments on MP extraction in sewage sludge.


Assuntos
Plásticos , Esgotos , Animais , Bovinos , Ecossistema , Peróxido de Hidrogênio , Microplásticos
3.
Water Res ; 157: 228-237, 2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-30954698

RESUMO

Microplastics (MPs) as new pollutants of environmental concern have been widely detected in sewage sludge, and may act as significant vectors for metal pollutants due to their adsorption property. Our findings show that Cd, Pb, and Co, but not Ni, contents in sewage sludge are lower than that of corresponding metal irons adsorbed on sludge-based MPs, indicating that the MPs accumulate such metal pollutants as Cd in the sludge samples. In contrast to virgin MPs, sludge-based MPs are one order of magnitude higher adsorption capacity for Cd, which reaches up to 2.523 mg g-1, implying that there is a considerable enhancement in adsorption potential of the MPs for metals after the wastewater treatment process. SEM analysis shows that sludge-based MPs have rougher and more porous surface than virgin MPs, and FTIR spectra reveal that functional groups such as CO and OH are found on sludge-based MPs. Further, two-dimensional FTIR correlation spectroscopy indicates that CO and NH functional groups play a vital role in the process that sludge-based MPs adsorb Cd, which are not found in virgin MPs. The results imply that increased adsorption potentials of the sludge-based MPs to Cd are attributed to changes in the MP physicochemical properties during wastewater treatment process. In addition, such factors as pH value, and sludge inorganic and organic components also have an effect on the MP adsorption to Cd. Principal component analysis shows that the MPs could be divided into three categories, i.e. polyamide, rubbery MPs (polyethylene and polypropylene) and glassy MPs (polyvinyl chloride and polystyrene). Their adsorption potentials to Cd follow the decreasing order: polyamide > rubbery MPs > glassy MPs. In summary, these findings indicate that MPs may exert an important influence on fate and transport of metal pollutants during sewage sludge treatment process, which deserves to be further concerned.


Assuntos
Poluentes Ambientais , Esgotos , Adsorção , Metais , Plásticos , Águas Residuárias
4.
Water Res ; 142: 75-85, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29859394

RESUMO

Sludge disposal such as land application is suspected as a significant source of microplastic (MP) pollution in the environment. To examine such a hypothesis, the present study was conducted to investigate the occurrence of MPs in sludge by analyzing 79 sewage sludge samples collected from 28 wastewater treatment plants (WWTPs) in 11 Chinese provinces. MP concentrations in the sludge samples ranged from 1.60-56.4 × 103 particles per kilogram of dry sludge, with an average of 22.7 ±â€¯12.1 × 103 particles per kilogram of dry sludge. Thereinto, the sludge-based MP contents were greater in eastern China than in western China and varied during different months. Their colors and types were mainly white (59.6%) and fibers (63%), respectively. Microscope Fourier Transform infrared spectroscopy revealed that most of MPs belonged to polyolefin, acrylic fibers, polyethylene and polyamide. Some WWTP parameters, such as servicing area, proportion of industrial wastewater, secondary treatment and sludge dewatering may have affected MP concentrations in sludge. Based on the total sludge production in China, the average amount of sludge-based MPs entering into natural environmental was estimated to be 1.56 × 1014 particles per year. The findings confirmed that sewage sludge discharge is an important source of MP pollution in the environment. Further evaluation of the associated environmental hazards with MPs is deemed necessary.


Assuntos
Plásticos/análise , Esgotos/química , Poluentes Químicos da Água/análise , China , Monitoramento Ambiental , Espectroscopia de Infravermelho com Transformada de Fourier , Eliminação de Resíduos Líquidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...