Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int Immunopharmacol ; 138: 112570, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38971105

RESUMO

Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) shows promising therapeutic potential in cancer treatment as it is able to trigger extrinsic apoptotic pathways by binding to the cognate death receptor, causing broad-spectrum apoptosis in cancer cells with negligible toxicity to normal cells. However, the majority of cancers display resistance to TRAIL, limiting its clinical utility. Overcoming resistance to TRAIL therapies remains a challenge in the development of effective anti-cancer strategies. To address the limitations of TRAIL therapy, a viable alternative approach involves combining TRAIL with more potent drugs compared to monotherapy. This combination strategy aims to induce synergistic effects or sensitize drug-resistant cancer cells. This review provides an overview of relevant modalities of TRAIL combination therapy, highlighting different drug classes. The findings demonstrate that combining TRAIL with other agents can effectively counteract resistance observed with TRAIL therapies in cancer. These findings lay a foundation for future advancements in TRAIL-based therapies for treating various cancers.

2.
Zhongguo Fei Ai Za Zhi ; 27(5): 337-344, 2024 May 20.
Artigo em Chinês | MEDLINE | ID: mdl-38880921

RESUMO

BACKGROUND: Lung adenocarcinoma (LUAD) is a highly morbid and fatal cancer. Despite advancements in modern medical treatment, the 5-year survival rate of patients remains suboptimal. Our previous study revealed that zinc finger SWIM-type containing 1 (ZSWIM1), a novel protein, promotes the proliferation, migration, and invasion of LUAD cells. The aim of this study is to investigate the impact of E3 ubiquitin ligase tripartite motif protein 21 (TRIM21) on ZSWIM1-mediated cell proliferation and migration. METHODS: The interaction and co-localization between TRIM21 and ZSWIM1 were verified using co-immunoprecipitation (Co-IP) and immunofluorescence (IF). The effects of TRIM21 and ZSWIM1 on the proliferation and migration of LUAD cells were assessed through MTT and Transwell assays, respectively. Western blot (WB) analysis was conducted to evaluate the impact of TRIM21 and ZSWIM1 on the expression of epithelial-mesenchymal transition (EMT) markers in LUAD cells. The influence of TRIM21 on the ubiquitination of ZSWIM1 was examined using Co-IP combined with WB. RESULTS: TRIM21 was found to interact and co-localize with ZSWIM1. Overexpression of TRIM21 inhibited the proliferation and migration of LUAD cells. Overexpression of TRIM21 reduced the promoting effect of ZSWIM1 on the proliferation, migration, and invasion of lung adenocarcinoma cells, and reversed the impact of ZSWIM1 on the expression of E-cadherin and Vimentin. Conversely, knockdown of TRIM21 further enhanced the promoting effect of ZSWIM1 on the proliferation and migration of LUAD cells. Mechanistically, we observed that overexpression of TRIM21 significantly enhanced the ubiquitination level of ZSWIM1, leading to a decrease in ZSWIM1 protein expression. CONCLUSIONS: TRIM21 binds to and promotes the ubiquitination of ZSWIM1, resulting in reduced protein expression of ZSWIM1, which leads to the inhibition of ZSWIM1-mediated promotion of proliferation, migration, and invasion in LUAD cells.


Assuntos
Adenocarcinoma de Pulmão , Movimento Celular , Proliferação de Células , Neoplasias Pulmonares , Humanos , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Transição Epitelial-Mesenquimal , Linhagem Celular Tumoral , Ribonucleoproteínas/metabolismo , Ribonucleoproteínas/genética , Ubiquitinação , Ligação Proteica , Células A549
3.
Inflamm Res ; 72(8): 1567-1581, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37438583

RESUMO

BACKGROUND: Intercellular communication between macrophages and peritoneal mesothelial cells (PMCs) has been suggested as a key factor regulating peritonitis development. Here, we explored whether PPARγ (peroxisome proliferator-activated receptor gamma) can be packaged into macrophage exosomes to mediate intercellular communication and regulate peritonitis. METHODS: Macrophage exosomes were isolated by ultracentrifugation and identified by nanoparticle tracking analysis and transmission electron microscopy. Proteomic analysis of macrophage-derived exosomes was performed using mass spectrometry. Co-culture models of supernatants or exosomes with PMCs, as well as a mouse peritonitis model induced by lipopolysaccharide (LPS), were employed. RESULTS:  In this study, using stable Raw264.7 cells overexpressing GFP-FLAG-PPARγ (OE-PPARγ), we found that PPARγ inhibited LPS-induced inflammatory responses in Raw264.7 cells and that PPARγ was incorporated into macrophage exosomes during this process. Overexpression of PPARγ mainly regulated the secretion of differentially expressed exosomal proteins involved in the biological processes of protein transport, lipid metabolic process, cell cycle, apoptotic process, DNA damage stimulus, as well as the KEGG pathway of salmonella infection. Using co-culture models and mouse peritonitis model, we showed that exosomes from Raw264.7 cells overexpressing PPARγ inhibited LPS-induced inflammation in co-cultured human PMCs and in mice through downregulating CD14 and TLR4, two key regulators of the salmonella infection pathway. Pretreatment of the PPARγ inhibitor GW9662 abolished the anti-inflammatory effect of exosomes from Raw264.7 OE-PPARγ cells on human PMCs. CONCLUSIONS: These results suggested that overexpression of PPARγ largely altered the proteomic profile of macrophage exosomes and that exosomal PPARγ from macrophages acted as a regulator of intercellular communication to suppress LPS-induced inflammatory responses in vitro and in vivo via negatively regulating the CD14/TLR4 axis.


Assuntos
Fenômenos Biológicos , Peritonite , Camundongos , Humanos , Animais , PPAR gama/metabolismo , Lipopolissacarídeos/farmacologia , Receptor 4 Toll-Like/metabolismo , Proteômica , Macrófagos/metabolismo , Peritonite/induzido quimicamente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...