Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant J ; 117(4): 1179-1190, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37985448

RESUMO

Chloroplast biogenesis is critical for crop biomass and economic yield. However, chloroplast development is a very complicated process coordinated by cross-communication between the nucleus and plastids, and the underlying mechanisms have not been fully revealed. To explore the regulatory machinery for chloroplast biogenesis, we conducted map-based cloning of the Grandpa 1 (Gpa1) gene regulating chloroplast development in barley. The spontaneous mutation gpa1.a caused a variegation phenotype of the leaf, dwarfed growth, reduced grain yield, and increased tiller number. Genetic mapping anchored the Gpa1 gene onto 2H within a gene cluster functionally related to photosynthesis or chloroplast differentiation. One gene (HORVU.MOREX.r3.2HG0213170) in the delimited region encodes a putative plastid terminal oxidase (PTOX) in thylakoid membranes, which is homologous to IMMUTANS (IM) of Arabidopsis. The IM gene is required for chloroplast biogenesis and maintenance of functional thylakoids in Arabidopsis. Using CRISPR technology and gene transformation, we functionally validated that the PTOX-encoding gene, HORVU.MOREX.r3.2HG0213170, is the causal gene of Gpa1. Gene expression and chemical analysis revealed that the carotenoid biosynthesis pathway is suppressed by the gpa1 mutation, rendering mutants vulnerable to photobleaching. Our results showed that the overtillering associated with the gpa1 mutation was caused by the lower accumulation of carotenoid-derived strigolactones (SLs) in the mutant. The cloning of Gpa1 not only improves our understanding of the molecular mechanisms underlying chloroplast biosynthesis but also indicates that the PTOX activity is conserved between monocots and dicots for the establishment of the photosynthesis factory.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Hordeum , Arabidopsis/metabolismo , Oxirredutases/genética , Oxirredutases/metabolismo , Hordeum/genética , Hordeum/metabolismo , Proteínas de Arabidopsis/metabolismo , Cloroplastos/metabolismo , Plastídeos/genética , Plastídeos/metabolismo , Mutação , Carotenoides/metabolismo , Regulação da Expressão Gênica de Plantas/genética
3.
J Neurosci ; 35(45): 15157-69, 2015 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-26558786

RESUMO

In Alzheimer's disease, accumulation of soluble oligomers of ß-amyloid peptide is known to be highly toxic, causing disturbances in synaptic activity and neuronal death. Multiple studies relate these effects to increased oxidative stress and aberrant activity of calcium-permeable cation channels leading to calcium imbalance. The transient receptor potential melastatin 2 (TRPM2) channel, a Ca(2+)-permeable nonselective cation channel activated by oxidative stress, has been implicated in neurodegenerative diseases, and more recently in amyloid-induced toxicity. Here we show that the function of TRPM2 is augmented by treatment of cultured neurons with ß-amyloid oligomers. Aged APP/PS1 Alzheimer's mouse model showed increased levels of endoplasmic reticulum stress markers, protein disulfide isomerase and phosphorylated eukaryotic initiation factor 2α, as well as decreased levels of the presynaptic marker synaptophysin. Elimination of TRPM2 in APP/PS1 mice corrected these abnormal responses without affecting plaque burden. These effects of TRPM2 seem to be selective for ß-amyloid toxicity, as ER stress responses to thapsigargin or tunicamycin in TRPM2(-/-) neurons was identical to that of wild-type neurons. Moreover, reduced microglial activation was observed in TRPM2(-/-)/APP/PS1 hippocampus compared with APP/PS1 mice. In addition, age-dependent spatial memory deficits in APP/PS1 mice were reversed in TRPM2(-/-)/APP/PS1 mice. These results reveal the importance of TRPM2 for ß-amyloid neuronal toxicity, suggesting that TRPM2 activity could be potentially targeted to improve outcomes in Alzheimer's disease. SIGNIFICANCE STATEMENT: Transient receptor potential melastatin 2 (TRPM2) is an oxidative stress sensing calcium-permeable channel that is thought to contribute to calcium dysregulation associated with neurodegenerative diseases, including Alzheimer's disease. Here we show that oligomeric ß-amyloid, the toxic peptide in Alzheimer's disease, facilitates TRPM2 channel activation. In mice designed to model Alzheimer's disease, genetic elimination of TRPM2 normalized deficits in synaptic markers in aged mice. Moreover, the absence of TRPM2 improved age-dependent spatial memory deficits observed in Alzheimer's mice. Our results reveal the importance of TRPM2 for neuronal toxicity and memory impairments in an Alzheimer's mouse model and suggest that TRPM2 could be targeted for the development of therapeutic agents effective in the treatment of dementia.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Transtornos da Memória/metabolismo , Canais de Cátion TRPM/deficiência , Doença de Alzheimer/induzido quimicamente , Peptídeos beta-Amiloides/toxicidade , Animais , Células Cultivadas , Humanos , Masculino , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Placa Amiloide/metabolismo , Canais de Cátion TRPM/genética
4.
Invest Ophthalmol Vis Sci ; 53(13): 8333-43, 2012 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-23150625

RESUMO

PURPOSE: Diabetic retinopathy entails proliferation of vascular endothelial cells (ECs) and unregulated angiogenesis. We have previously shown that ECs increase the expression of an embryonic variant of fibronectin (FN), called extra domain-B FN (ED-B FN) in response to high glucose. We also showed that ED-B FN regulates EC tube morphogenesis, possibly through vascular endothelial growth factor (VEGF). In the present study, we have attempted to decipher the mechanisms by which ED-B FN may modulate EC phenotype. METHODS: We hypothesized that ED-B FN regulates VEGF expression in ECs through interaction with selected integrin receptors. To test this hypothesis, we first cultured ECs in high levels of glucose to investigate for any alteration. We then used integrin-specific matrix mimetic peptides, neutralizing antibodies, and RNAi to identify the integrin(s) involved in VEGF expression. Finally, we used an animal model of diabetes to study whether these in vitro mechanisms also take place in the retina. RESULTS: Our results show that exposure of ECs to high levels of glucose increased VEGF expression. ED-B FN mediated this increase since knockdown of ED-B FN completely prevented glucose-induced VEGF expression. We then identified ß1 integrin as the essential receptor involved in high glucose-induced VEGF expression. We also showed that diabetes increased ß1 integrin and VEGF expression in the retina, which normalized upon ED-B knockdown. CONCLUSIONS: These findings showed that high levels of glucose in diabetes increased VEGF expression in ECs through ED-B FN and ß1 integrin interaction. These results provide novel mechanistic basis of increased VEGF expression in diabetes.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Células Endoteliais/efeitos dos fármacos , Fibronectinas/metabolismo , Regulação da Expressão Gênica/fisiologia , Fator A de Crescimento do Endotélio Vascular/genética , Animais , Anticorpos Neutralizantes , Western Blotting , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Células Endoteliais/metabolismo , Fibronectinas/genética , Técnica Indireta de Fluorescência para Anticorpo , Glucose/toxicidade , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Integrina alfa2beta1/antagonistas & inibidores , Integrina alfa2beta1/metabolismo , Integrina alfa5beta1/antagonistas & inibidores , Integrina alfa5beta1/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Interferência de RNA , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase em Tempo Real , Vasos Retinianos/citologia , Transfecção
5.
J Diabetes Investig ; 2(2): 123-31, 2011 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-24843471

RESUMO

UNLABELLED: Aims/Introduction: In diabetes, increased oxidative stress as a result of damage to the electron transport chain can lead to tissue injury through upregulation of multiple vasoactive factors and extracellular matrix proteins. Benfotiamine, a lipid soluble thiamine derivative, through reducing mitochondrial superoxide production, blocks multiple pathways leading to tissue damage in hyperglycemia. We investigated if treatment with benfotiamine can prevent diabetes-induced production of vasoactive factors and extracellular matrix proteins, and whether such effects are tissue-specific. We also examined whether effects of benfotiamine are mediated through a nuclear mechanism. MATERIALS AND METHODS: Retinal, renal and cardiac tissues from the streptozotocin-induced diabetic rats were examined after 4 months of follow up. mRNA levels were quantified using real-time RT-PCR. Protein levels were quantified using western blot and ELISA. Cellular expressions of 8-Hydroxy-2'-deoxyguanosine, a marker of nuclear DNA damage and Phospho-H2AX were also examined. RESULTS: Diabetic animals showed hyperglycemia, glucosuria, increased urinary albumin/creatine ratio and loss of bodyweight. In the kidneys, heart and retina, diabetes caused increased production of endothelin-1, transforming growth factor-ß1, vascular endothelial growth factor and augmented extracellular matrix proteins (collagen, fibronectin [FN] and its splice variant extradomain B containing FN), along with evidence of structural alterations, characteristic of diabetes-induced tissue damage. Such changes were prevented by benfotiamine. Furthermore, benfotiamine prevented diabetes-induced oxidative DNA damage and upregulation of p300, a histone acetylator and a transcription coactivator. CONCLUSIONS: Data from the present study suggest that benfotiamine is effective in preventing tissue damage in diabetes and at the transcriptional level such effects are mediated through prevention of p300 upregulation. (J Diabetes Invest, doi: 10.1111/j.2040-1124.2010.00077.x, 2010).

6.
Am J Physiol Endocrinol Metab ; 298(1): E127-37, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19903865

RESUMO

Sustained hyperglycemia in diabetes causes alteration of a large number of transcription factors and mRNA transcripts, leading to tissue damage. We investigated whether p300, a transcriptional coactivator with histone acetyl transferase activity, regulates glucose-induced activation of transcription factors and subsequent upregulation of vasoactive factors and extracellular matrix (ECM) proteins in human umbilical vein endothelial cells (HUVECs). HUVECs were incubated in varied glucose concentrations and were studied after p300 small interfering RNA (siRNA) transfection, p300 overexpression, or incubation with the p300 inhibitor curcumin. Histone H2AX phosphorylation and lysine acetylation were examined for oxidative DNA damage and p300 activation. Screening for transcription factors was performed with the Luminex system. Alterations of selected transcription factors were validated. mRNA expression of p300, endothelin-1 (ET-1), vascular endothelial growth factor (VEGF), and fibronectin (FN) and its splice variant EDB(+)FN and FN protein production were analyzed. HUVECs in 25 mmol/l glucose showed increased p300 production accompanied by increased binding of p300 to ET-1 and FN promoters, augmented histone acetylation, H2AX phosphorylation, activation of multiple transcription factors, and increased mRNA expression of vasoactive factors and ECM proteins. p300 overexpression showed a glucose-like effect on the mRNA expression of ET-1, VEGF, and FN. Furthermore, siRNA-mediated p300 blockade or chemical inhibitor of p300 prevented such glucose-induced changes. Similar mRNA upregulation was also seen in the organ culture of vascular tissues, which was prevented by p300 siRNA transfection. Data from these studies suggest that glucose-induced p300 upregulation is an important upstream epigenetic mechanism regulating gene expression of vasoactive factors and ECM proteins in endothelial cells and is a potential therapeutic target for diabetic complications.


Assuntos
Complicações do Diabetes/genética , Células Endoteliais/fisiologia , Glucose/farmacologia , Hiperglicemia/genética , Fatores de Transcrição de p300-CBP/metabolismo , Acetilação/efeitos dos fármacos , Animais , Aorta/fisiologia , Divisão Celular/fisiologia , Sobrevivência Celular/fisiologia , Células Cultivadas , Dano ao DNA/fisiologia , Complicações do Diabetes/metabolismo , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Endotelina-1/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Histonas/metabolismo , Humanos , Hiperglicemia/metabolismo , Masculino , Técnicas de Cultura de Órgãos , RNA Mensageiro/metabolismo , RNA Interferente Pequeno , Ratos , Ratos Sprague-Dawley , Veias Umbilicais/citologia , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/fisiologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fatores de Transcrição de p300-CBP/genética
7.
Blood ; 111(5): 2929-40, 2008 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-18178870

RESUMO

Dendritic cells (DCs) are considered critical for the induction of graft-versus-host disease (GVHD) after bone marrow transplantation (BMT). In addition to their priming function, dendritic cells have been shown to induce organ-tropism through induction of specific homing molecules on T cells. Using adoptive transfer of CFSE-labeled cells, we first demonstrated that alloreactive T cells differentially up-regulate specific homing molecules in vivo. Host-type dendritic cells from the GVHD target organs liver and spleen or skin- and gut-draining lymph nodes effectively primed naive allogeneic T cells in vitro with the exception of liver-derived dendritic cells, which showed less stimulatory capacity. Gut-derived dendritic cells induced alloreactive donor T cells with a gut-homing phenotype that caused increased GVHD mortality and morbidity compared with T cells stimulated with dendritic cells from spleen, liver, and peripheral lymph nodes in an MHC-mismatched murine BMT model. However, in vivo analysis demonstrated that the in vitro imprinting of homing molecules on alloreactive T cells was only transient. In conclusion, organ-derived dendritic cells can efficiently induce specific homing molecules on alloreactive T cells. A gut-homing phenotype correlates with increased GVHD mortality and morbidity after murine BMT, underlining the importance of the gut in the pathophysiology of GVHD.


Assuntos
Células Dendríticas/citologia , Células Dendríticas/imunologia , Isoantígenos/imunologia , Linfócitos T/imunologia , Animais , Proliferação de Células/efeitos dos fármacos , Células Dendríticas/efeitos dos fármacos , Perfilação da Expressão Gênica , Doença Enxerto-Hospedeiro , Humanos , Integrinas/metabolismo , Ligantes , Lipopolissacarídeos/farmacologia , Fígado/citologia , Fígado/efeitos dos fármacos , Ativação Linfocitária/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Análise de Sequência com Séries de Oligonucleotídeos , Especificidade de Órgãos/efeitos dos fármacos , Fenótipo , Receptores de Retorno de Linfócitos/genética , Receptores de Retorno de Linfócitos/metabolismo , Selectinas/metabolismo , Taxa de Sobrevida , Linfócitos T/citologia , Linfócitos T/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...