Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Pharmacol ; 13: 937581, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36091763

RESUMO

In this study, three acidic polysaccharides from different plant parts of Codonopsis pilosula var. Modesta (Nannf.) L. T. Shen were obtained by ion exchange chromatography and gel filtration chromatography, and the yields of these three polysaccharides were different. According to the preliminary experimental results, the antioxidant activities of the polysaccharides from rhizomes and fibrous roots (CLFP-1) were poor, and was thus not studied further. Due to this the structural features of polysaccharides from roots (CLRP-1) and aerial parts (CLSP-1) were the object for this study and were structurally characterized, and their antioxidant activities were evaluated. As revealed by the results, the molecular weight of CLRP-1and CLSP-1 were 15.9 kDa and 26.4 kDa, respectively. The monosaccharide composition of CLRP-1 was Ara, Rha, Fuc, Xyl, Man, Gal, GlcA, GalA in a ratio of 3.8: 8.4: 1.0: 0.8: 2.4: 7.4: 7.5: 2.0: 66.7, and Ara, Rha, Gal, GalA in a ratio of 5.8: 8.9: 8.0: 77.0 in for CLSP-1. The results of structural elucidation indicated that both CLRP-1 and CLSP-1 were pectic polysaccharides, mainly composed of 1, 4-linked galacturonic acid with long homogalacturonan regions. Arabinogalactan type I and arabinogalactan type II were presented as side chains. The antioxidant assay in IPEC-J2 cells showed that both CLRP-1 and CLSP-1 promoted cell viability and antioxidant activity, which significantly increase the level of total antioxidant capacity and the activity of superoxide dismutase, catalase, and decrease the content of malondialdehyde. Moreover, CLRP-1 and CLSP-1 also showed powerful antioxidant abilities in Caenorhabditis elegans and might regulate the nuclear localization of DAF-16 transcription factor, induced antioxidant enzymes activities, and further reduced reactive oxygen species and malondialdehyde contents to increase the antioxidant ability of Caenorhabditis elegans. Thus, these finding suggest that CLRP-1 and CLSP-1 could be used as potential antioxidants.

2.
J Food Sci ; 87(7): 2999-3012, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35674229

RESUMO

As the main component of truffles, polysaccharides have a variety of biological activities such as anti-oxidation, anti-tumor, and hypoglycemic activity, and these activities are closely related to its structure. In this study, Tuber Aestivum crude polysaccharide (TACP) and Tuber Melanosporum crude polysaccharide (TMCP) were obtained from Tuber Aestivum and Tuber Melanosporum by using microwave-assisted hot water, and then the Sephadex G-200 column was utilized to further separate and purify Tuber Aestivum polysaccharide (TAP) and Tuber Melanosporum polysaccharide (TMP) from TACP and TMCP. The structural characterization results showed that the molecular weight of TAP was 2.18 × 104  kDa, while TMP was 8.79 × 103  kDa. Although the two polysaccharide components were mainly composed of mannose (Man) and glucose (Glc), the molar ratio of Man and Glc in TAP was 14.76: 12.31, with a molar ratio of 5.43:10.94 in TMP. Furthermore, the antioxidant activity of two polysaccharide components was evaluated. TAP and TMP could protect porcine jejunal epithelial (IPEC-J2) cells from oxidative damage by H2 O2 , but TAP exhibited stronger antioxidant effects. It was mainly reflected that TAP could increase the secretion level of intracellular antioxidant enzymes (superoxide dismutase and catalase) in IPEC-J2 cells, and had a significant effect on the total antioxidant capacity of cells. The reactive oxygen species and malondialdehyde had better scavenging ability at the concentration of 20 µg/ml. The difference between TAP and TMP may be due to the dissimilar structure. Its structure-activity relationship needs further study. PRACTICAL APPLICATION: The structure of TAP and TMP were different, and TAP had higher molecular weight. Besides, TAP and TMP can protect IPEC-J2 cells from oxidative stress, providing a theoretical basis for developing potential antioxidant drugs of practical significance.


Assuntos
Antioxidantes , Ascomicetos , Antioxidantes/química , Antioxidantes/farmacologia , Ascomicetos/química , Humanos , Manose , Polissacarídeos/química , Polissacarídeos/farmacologia
3.
Int J Biol Macromol ; 175: 473-480, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33571586

RESUMO

Platycodonis Radix is widely used as homology of medicine and food in China; polysaccharides are thought to be one of its functional constituents. In this study, a pectic polysaccharide, PGP-I-I, was obtained from the root of the traditional medicine plant Platycodon grandiflorus through ion exchange chromatography and gel filtration. This was characterized being mainly composed of 1,5-α-L-arabinan and both arabinogalactan type I (AG-I) and II chains linked to rhamnogalacturonan I (RG-I) backbone linked to longer galacturonan chains. In vitro bioactivity study showed that PGP-I-I could restore the intestinal cellular antioxidant defense under the condition of hydrogen peroxide (H2O2) treatment through promoting the expressions of cellular antioxidant genes and protect against oxidative damages.


Assuntos
Pectinas/química , Platycodon/química , Animais , Antioxidantes/química , Antioxidantes/isolamento & purificação , Linhagem Celular , Cromatografia em Gel , Cromatografia por Troca Iônica , Carboidratos da Dieta , Galactanos/química , Peróxido de Hidrogênio , Extratos Vegetais/química , Raízes de Plantas/química , Polissacarídeos/química , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...