Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Virol ; 90(5): 926-935, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29350417

RESUMO

Hepatic fibrosis is a frequent feature of chronic hepatitis C virus (HCV) infection. Some evidence has suggested the potential role of silent information regulator 1 (SIRT1) in organ fibrosis. The aim of this study was to investigate the effect of HCV core protein on expression of SIRT1 of liver sinusoidal endothelial cell (LSEC) and function of LSEC. LSECs were co-cultured with HepG2 cells or HepG2 cells expressing HCV core protein and LSECs cultured alone were used as controls. After co-culture, the activity and expression levels of mRNA and protein of SIRT1 in LSEC were detected by a SIRT1 fluorometric assay kit, real time-PCR (RT-PCR), Western blot, respectively. The levels of adiponectin receptor 2 (AdipoR2), endothelial nitric oxide synthase (eNOS) and vascular endothelial growth factor (VEGF) were measured by Western blot. Cluster of differentiation 31 (CD31), CD14, and von Willebrand factor (vWf) of LSECs was performed by flow cytometry. The level of reactive oxygen species (ROS) was assayed. Malondialdehyde (MDA), superoxide dismutase (SOD), adiponectin, nitric oxide (NO), and endothelin-1 (ET-1) levels in the co-culture supernatant were measured. The co-culture supernatant was then used to cultivate LX-2 cells. The levels of α-smooth muscle actin (ASMA) and transforming growth factor-ß1 (TGF-ß1) protein in LX-2 cells were measured by Western blot. Compared with LSEC co-cultured with HepG2 cells group, in LSEC co-cultured with HepG2-core cells group, the activity and expression level of mRNA and protein of SIRT1 reduced; the level of adiponectin reduced and the expression level of AdipoR2 protein decreased; ROS levels increased; the expression level of eNOS, VEGF protein decreased; and the expression level of CD14 decreased; the expression level of vWf and CD31 increased; NO and SOD levels decreased; whereas ET-1 and MDA levels increased; the levels of ASMA and TGF-ß1 protein in LX-2 cells increased. SIRT1 activator improved the above-mentioned changes. HCV core protein may down-regulate the activity and the expression of SIRT1 of LSEC, then decreasing synthesis of adiponectin and the expression of AdipoR2, thus inducing contraction of LSEC and hepatic sinusoidal capillarization and increasing oxidative stress, ultimately cause hepatic stellate cell (HSC) activation. Treatment with SIRT1 activator restored the function of LSEC and inhibited the activation of HSC.


Assuntos
Regulação para Baixo , Células Endoteliais/patologia , Hepatite C Crônica/complicações , Interações Hospedeiro-Patógeno , Cirrose Hepática/patologia , Sirtuína 1/biossíntese , Proteínas do Core Viral/metabolismo , Western Blotting , Células Cultivadas , Meios de Cultivo Condicionados , Citometria de Fluxo , Hepatite C Crônica/patologia , Humanos , Fígado/patologia , Modelos Biológicos , Espécies Reativas de Oxigênio/análise
2.
Int J Infect Dis ; 23: 75-81, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24704332

RESUMO

BACKGROUND: Insulin resistance is highly prevalent in patients with chronic hepatitis C (CHC) and to some extent accounts for fibrosis and reducing viral eradication. Activated cannabinoid 1 receptor (CB1R) signaling has been implicated in the development of phenotypes associated with insulin resistance and steatosis. We investigated the role of the endocannabinoid system in glucose metabolism disorders induced by hepatitis C virus (HCV) replication. METHODS: Human hepatic stellate cells (HSC; LX-2 cells) were co-cultured with Huh-7.5 cells or Huh-7.5 cells harboring HCV replicon (replicon cells). Endocannabinoid levels were then measured by liquid chromatography/mass spectrometry. The expression of CB1R and its downstream glucose metabolism genes in hepatocytes were determined by real-time PCR and Western blot. Glucose uptake by hepatocytes and glucose production were measured. Glucose metabolism tests and measurements of HCV RNA levels and nonstructural protein 5A (NS5A) levels were taken after treatment with CB1R agonist arachidonyl-2-chloroethanolamide (ACEA) or antagonist AM251. RESULTS: Compared to the co-culture with Huh-7.5 cells, the level of 2-arachidonoylglycerol (2-AG) and the CB1R mRNA and protein levels increased in the co-culture of LX-2 cells with replicon cells. The activation of CB1R decreased AMP-activated protein kinase (AMPK) phosphorylation, inhibited cell surface expression of glucose transporter 2 (GLUT2), and suppressed cellular glucose uptake; furthermore, it increased cyclic AMP response element-binding protein H (CREBH), then up-regulated phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) genes and down-regulated the glucokinase (GK) gene, thus promoting glucose production. Interferon treatment restored the aforementioned changes. CB1R antagonist improved glucose metabolism disorders by an increase in glucose uptake and a decrease in glucose production, and inhibited HCV replication. CONCLUSIONS: HCV replication may not only increase the 2-AG content, but may also up-regulate the expression of CB1R of hepatocytes, then change the expression profile of glucose metabolism-related genes, thereby causing glucose metabolism disorders of hepatocytes and promoting HCV replication. Treatment with CB1R antagonist improved glucose metabolism disorders and inhibited viral genome replication.


Assuntos
Endocanabinoides/metabolismo , Transtornos do Metabolismo de Glucose/virologia , Hepacivirus/isolamento & purificação , Hepatócitos/virologia , Receptor CB1 de Canabinoide/metabolismo , Replicação Viral , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Ácidos Araquidônicos/metabolismo , Ácidos Araquidônicos/farmacologia , Linhagem Celular , Sobrevivência Celular , Técnicas de Cocultura , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Genoma Viral , Transtornos do Metabolismo de Glucose/patologia , Transportador de Glucose Tipo 2/genética , Transportador de Glucose Tipo 2/metabolismo , Glucose-6-Fosfatase/genética , Glucose-6-Fosfatase/metabolismo , Glicerídeos/metabolismo , Hepacivirus/fisiologia , Células Estreladas do Fígado/patologia , Células Estreladas do Fígado/virologia , Hepatite C Crônica/patologia , Hepatócitos/metabolismo , Humanos , Fosforilação , Piperidinas/farmacologia , Alcamidas Poli-Insaturadas/metabolismo , Pirazóis/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Viral/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real , Receptor CB1 de Canabinoide/antagonistas & inibidores , Receptor CB1 de Canabinoide/genética , Transdução de Sinais , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...