Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38826308

RESUMO

Intra-articular delivery of disease-modifying osteoarthritis drugs (DMOADs) is likely to be most effective in early post-traumatic osteoarthritis (PTOA) when symptoms are minimal and patients are physically active. DMOAD delivery systems therefore must withstand repeated mechanical loading without affecting the drug release kinetics. Although soft materials are preferred for DMOAD delivery, mechanical loading can compromise their structural integrity and disrupt drug release. Here, we report a mechanically resilient soft hydrogel that rapidly self-heals under conditions resembling human running while maintaining sustained release of the cathepsin-K inhibitor L-006235 used as a proof-of-concept DMOAD. Notably, this hydrogel outperformed a previously reported hydrogel designed for intra-articular drug delivery, used as a control in our study, which neither recovered nor maintained drug release under mechanical loading. Upon injection into mouse knee joints, the hydrogel showed consistent release kinetics of the encapsulated agent in both treadmill-running and non-running mice. In a mouse model of aggressive PTOA exacerbated by treadmill running, L-006235 hydrogel markedly reduced cartilage degeneration. To our knowledge, this is the first hydrogel proven to withstand human running conditions and enable sustained DMOAD delivery in physically active joints, and the first study demonstrating reduced disease progression in a severe PTOA model under rigorous physical activity, highlighting the hydrogel's potential for PTOA treatment in active patients.

2.
JCI Insight ; 8(14)2023 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-37279064

RESUMO

Fatty acid binding protein 4 (FABP4) is a lipid chaperone secreted from adipocytes upon stimulation of lipolysis. Circulating FABP4 levels strongly correlate with obesity and metabolic pathologies in experimental models and humans. While adipocytes have been presumed to be the major source of hormonal FABP4, this question has not been addressed definitively in vivo. We generated mice with Fabp4 deletion in cells known to express the gene - adipocytes (Adipo-KO), endothelial cells (Endo-KO), myeloid cells (Myeloid-KO), and the whole body (Total-KO) - to examine the contribution of these cell types to basal and stimulated plasma FABP4 levels. Unexpectedly, baseline plasma FABP4 was not significantly reduced in Adipo-KO mice, whereas Endo-KO mice showed ~87% reduction versus WT controls. In contrast, Adipo-KO mice exhibited ~62% decreased induction of FABP4 responses to lipolysis, while Endo-KO mice showed only mildly decreased induction, indicating that adipocytes are the main source of increases in FABP4 during lipolysis. We did not detect any myeloid contribution to circulating FABP4. Surprisingly, despite the nearly intact induction of FABP4, Endo-KO mice showed blunted lipolysis-induced insulin secretion, identical to Total-KO mice. We conclude that the endothelium is the major source of baseline hormonal FABP4 and is required for the insulin response to lipolysis.


Assuntos
Células Endoteliais , Lipólise , Humanos , Animais , Camundongos , Lipólise/fisiologia , Secreção de Insulina , Células Endoteliais/metabolismo , Camundongos Knockout , Insulina/metabolismo , Endotélio/metabolismo , Proteínas de Ligação a Ácido Graxo/genética , Proteínas de Ligação a Ácido Graxo/metabolismo
3.
Adv Sci (Weinh) ; 8(12): 2100510, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34194950

RESUMO

Cancer patients undergoing therapeutic radiation routinely develop injury of the adjacent gastrointestinal (GI) tract mucosa due to treatment. To reduce radiation dose to critical GI structures including the rectum and oral mucosa, 3D-printed GI radioprotective devices composed of high-Z materials are generated from patient CT scans. In a radiation proctitis rat model, a significant reduction in crypt injury is demonstrated with the device compared to without (p < 0.0087). Optimal device placement for radiation attenuation is further confirmed in a swine model. Dosimetric modeling in oral cavity cancer patients demonstrates a 30% radiation dose reduction to the normal buccal mucosa and a 15.2% dose reduction in the rectum for prostate cancer patients with the radioprotectant material in place compared to without. Finally, it is found that the rectal radioprotectant device is more cost-effective compared to a hydrogel rectal spacer. Taken together, these data suggest that personalized radioprotectant devices may be used to reduce GI tissue injury in cancer patients undergoing therapeutic radiation.


Assuntos
Trato Gastrointestinal/efeitos da radiação , Neoplasias Bucais/radioterapia , Impressão Tridimensional , Lesões por Radiação/prevenção & controle , Proteção Radiológica/instrumentação , Proteção Radiológica/métodos , Animais , Modelos Animais de Doenças , Trato Gastrointestinal/diagnóstico por imagem , Humanos , Mucosa/diagnóstico por imagem , Mucosa/efeitos da radiação , Órgãos em Risco , Ratos , Ratos Sprague-Dawley , Suínos , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...