Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38826295

RESUMO

The oscillator of the cyanobacterial circadian clock relies on the ability of the KaiB protein to switch reversibly between a stable ground-state fold (gsKaiB) and an unstable fold-switched fold (fsKaiB). Rare fold-switching events by KaiB provide a critical delay in the negative feedback loop of this post-translational oscillator. In this study, we experimentally and computationally investigate the temperature dependence of fold switching and its mechanism. We demonstrate that the stability of gsKaiB increases with temperature compared to fsKaiB and that the Q10 value for the gsKaiB → fsKaiB transition is nearly three times smaller than that for the reverse transition. Simulations and native-state hydrogen-deuterium exchange NMR experiments suggest that fold switching can involve both subglobally and near-globally unfolded intermediates. The simulations predict that the transition state for fold switching coincides with isomerization of conserved prolines in the most rapidly exchanging region, and we confirm experimentally that proline isomerization is a rate-limiting step for fold switching. We explore the implications of our results for temperature compensation, a hallmark of circadian clocks, through a kinetic model.

3.
Brain Connect ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874971

RESUMO

INTRODUCTION: Essential tremor (ET) comprises motor and non-motor related features, while the current neuro-pathogenetic basis is still insufficient to explain the etiologies of ET. While cerebellum associated circuits have been discovered, the large-scale cerebral network connectivity in ET remains unclear. This study aimed to characterize the ET in terms of functional connectivity as well as network. We hypothesized that the resting-state network within cerebrum could be altered in ET patients. METHODS: Resting-state functional MRI (fMRI) was used to evaluate the inter- and intra-network connectivity as well as the functional activity in ET and normal control. Correlation analysis was performed to explore the relationship between resting-state network metrics and tremor features. RESULTS: Comparison of inter-network connectivity indicated a decreased connectivity between default mode network and ventral attention network in ET group (P<0.05). Differences in functional activity (assessed by amplitude of low frequency fluctuation, ALFF) were found in several brain regions participating in various resting-state networks (P<0.05). ET group generally have higher degree centrality over normal control. Correlation analysis has revealed that tremor features are associated with inter-network connectivity (|r|=0.135-0.506), ALFF (|r|=0.313-0.766), and degree centrality (|r|=0.523-0.710). CONCLUSION: Alterations in the cerebral network of ET was detected by using resting-state fMRI, demonstrating a potentially useful approach to explore the cerebral alterations in ET.

6.
J Am Chem Soc ; 144(25): 11413-11424, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35699585

RESUMO

The results of quantum chemical and molecular dynamics calculations reveal that polyanionic gallium-based cages accelerate cyclization reactions of pentadienyl alcohols as a result of substrate cage interactions, preferential binding of reactive conformations of substrate/H3O+ pairs, and increased substrate basicity. However, the increase in basicity dominates. Experimental structure-activity relationship studies in which the metal vertices and overall charge of the cage are varied confirm the model derived via calculations.


Assuntos
Biomimética , Simulação de Dinâmica Molecular , Aceleração , Ciclização , Conformação Molecular
7.
ACS Bio Med Chem Au ; 2(1): 11-21, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35187536

RESUMO

Radical S-adenosylmethionine (radical SAM or rSAM) enzymes use their S-adenosylmethionine cofactor bound to a unique Fe of a [4Fe-4S] cluster to generate the "hot" 5'-deoxyadenosyl radical, which drives highly selective radical reactions via specific interactions with a given rSAM enzyme's substrate. This Perspective focuses on the two rSAM enzymes involved in the biosynthesis of the organometallic H-cluster of [FeFe] hydrogenases. We present here a detailed sequential model initiated by HydG, which lyses a tyrosine substrate via a 5'-deoxyadenosyl H atom abstraction from those amino acid's amino group, initially producing dehydroglycine and an oxidobenzyl radical. In this model, two successive radical cascade reactions lead ultimately to the formation of HydG's product, a mononuclear Fe organometallic complex: [Fe(II)(CN)(CO)2(cysteinate)]-, with the iron originating from a unique "dangler" Fe coordinated by a cysteine ligand providing a sulfur bridge to another [4Fe-4S] auxiliary cluster in the enzyme. In turn, in this model, [Fe(II)(CN)(CO)2(cysteinate)]- is the substrate for HydE, the second rSAM enzyme in the biosynthetic pathway, which activates this mononuclear organometallic unit for dimerization, forming a [Fe2S2(CO)4(CN)2] precursor to the [2Fe] H component of the H-cluster, requiring only the completion of the bridging azadithiolate (SCH2NHCH2S) ligand. This model is built upon a foundation of data that incorporates cell-free synthesis, isotope sensitive spectroscopies, and the selective use of synthetic complexes substituting for intermediates in the enzymatic "assembly line". We discuss controversies pertaining to this model and some remaining open issues to be addressed by future work.

8.
Biochemistry ; 61(2): 107-116, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34989236

RESUMO

The radical S-adenosyl-l-methionine (SAM) enzyme HydG cleaves tyrosine to generate CO and CN- ligands of the [FeFe] hydrogenase H-cluster, accompanied by the formation of a 4-oxidobenzyl radical (4-OB•), which is the precursor to the HydG p-cresol byproduct. Native HydG only generates a small amount of 4-OB•, limiting detailed electron paramagnetic resonance (EPR) spectral characterization beyond our initial EPR lineshape study employing various tyrosine isotopologues. Here, we show that the concentration of trapped 4-OB• is significantly increased in reactions using HydG variants, in which the "dangler Fe" to which CO and CN- bind is missing or substituted by a redox-inert Zn2+ ion. This allows for the detailed characterization of 4-OB• using high-field EPR and electron nuclear double resonance spectroscopy to extract its g-values and 1H/13C hyperfine couplings. These results are compared to density functional theory-predicted values of several 4-OB• models with different sizes and protonation states, with a best fit to the deprotonated radical anion configuration of 4-OB•. Overall, our results depict a clearer electronic structure of the transient 4-OB• radical and provide new insights into the radical SAM chemistry of HydG.


Assuntos
Proteínas de Bactérias , Proteínas Ferro-Enxofre , S-Adenosilmetionina , Shewanella , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Radicais Livres/química , Radicais Livres/metabolismo , Proteínas Ferro-Enxofre/química , Proteínas Ferro-Enxofre/metabolismo , Modelos Moleculares , S-Adenosilmetionina/química , S-Adenosilmetionina/metabolismo , Shewanella/química , Shewanella/metabolismo
9.
Biochemistry ; 60(40): 3016-3026, 2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34569243

RESUMO

The [FeFe] hydrogenase catalyzes the redox interconversion of protons and H2 with a Fe-S "H-cluster" employing CO, CN, and azadithiolate ligands to two Fe centers. The biosynthesis of the H-cluster is a highly interesting reaction carried out by a set of Fe-S maturase enzymes called HydE, HydF, and HydG. HydG, a member of the radical S-adenosylmethionine (rSAM) family, converts tyrosine, cysteine, and Fe(II) into an organometallic Fe(II)(CO)2(CN)cysteine "synthon", which serves as the substrate for HydE. Although key aspects of the HydG mechanism have been experimentally determined via isotope-sensitive spectroscopic methods, other important mechanistic questions have eluded experimental determination. Here, we use computational quantum chemistry to refine the mechanism of the HydG catalytic reaction. We utilize quantum mechanics/molecular mechanics simulations to investigate the reactions at the canonical Fe-S cluster, where a radical cleavage of the tyrosine substrate takes place and proceeds through a relay of radical intermediates to form HCN and a COO•- radical anion. We then carry out a broken-symmetry density functional theory study of the reactions at the unusual five-iron auxiliary Fe-S cluster, where two equivalents of CN- and COOH• coordinate to the fifth "dangler iron" in a series of substitution and redox reactions that yield the synthon as the final product for further processing by HydE.


Assuntos
Proteínas de Bactérias/química , Complexos de Coordenação/química , Cisteína/química , Hidrogenase/química , Proteínas Ferro-Enxofre/química , Biocatálise , Ferro/química , Ligantes , Modelos Químicos , Teoria Quântica , Thermoanaerobacter/enzimologia , Tirosina/química
10.
Biopolymers ; 112(10): e23473, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34528703

RESUMO

Proteins that can reversibly alternate between distinctly different folds under native conditions are described as being metamorphic. The "metamorphome" is the collection of all metamorphic proteins in the proteome, but it remains unknown the extent to which the proteome is populated by this class of proteins. We propose that uncovering the metamorphome will require a synergy of computational screening of protein sequences to identify potential metamorphic behavior and validation through experimental techniques. This perspective discusses computational and experimental approaches that are currently used to predict and characterize metamorphic proteins as well as the need for developing improved methodologies. Since metamorphic proteins act as molecular switches, understanding their properties and behavior could lead to novel applications of these proteins as sensors in biological or environmental contexts.


Assuntos
Dobramento de Proteína , Proteoma , Sequência de Aminoácidos
11.
Biophys J ; 119(7): 1380-1390, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32937108

RESUMO

An increasing number of proteins have been demonstrated in recent years to adopt multiple three-dimensional folds with different functions. These metamorphic proteins are characterized by having two or more folds with significant differences in their secondary structure, in which each fold is stabilized by a distinct local environment. So far, ∼90 metamorphic proteins have been identified in the Protein Databank, but we and others hypothesize that a far greater number of metamorphic proteins remain undiscovered. In this work, we introduce a computational model to predict metamorphic behavior in proteins using only knowledge of the sequence. In this model, secondary structure prediction programs are used to calculate diversity indices, which are measures of uncertainty in predicted secondary structure at each position in the sequence; these are then used to assign protein sequences as likely to be metamorphic versus monomorphic (i.e., having just one fold). We constructed a reference data set to train our classification method, which includes a novel compilation of 136 likely monomorphic proteins and a set of 201 metamorphic protein structures taken from the literature. Our model is able to classify proteins as metamorphic versus monomorphic with a Matthews correlation coefficient of ∼0.36 and true positive/true negative rates of ∼65%/80%, suggesting that it is possible to predict metamorphic behavior in proteins using only sequence information.


Assuntos
Dobramento de Proteína , Proteínas , Sequência de Aminoácidos , Bases de Dados de Proteínas , Estrutura Secundária de Proteína
12.
J Phys Chem B ; 122(3): 1121-1131, 2018 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-29285933

RESUMO

The pyrimidine-specific nucleoside hydrolase Yeik (CU-NH) from Escherichia coli cleaves the N-glycosidic bond of uridine and cytidine with a 102-104-fold faster rate than that of purine nucleoside substrates, such as inosine. Such a remarkable substrate specificity and the plausible hydrolytic mechanisms of uridine have been explored by using QM/MM and MM MD simulations. The present calculations show that the relatively stronger hydrogen-bond interactions between uridine and the active-site residues Gln227 and Tyr231 in CU-NH play an important role in enhancing the substrate binding and thus promoting the N-glycosidic bond cleavage, in comparison with inosine. The estimated energy barrier of 30 kcal/mol for the hydrolysis of inosine is much higher than 22 kcal/mol for uridine. Extensive MM MD simulations on the transportation of substrates to the active site of CU-NH indicate that the uridine binding is exothermic by ∼23 kcal/mol, more remarkable than inosine (∼12 kcal/mol). All of these arise from the noncovalent interactions between the substrate and the active site featured in CU-NH, which account for the substrate specificity. Quite differing from other nucleoside hydrolases, here the enzymatic N-glycosidic bond cleavage of uridine is less influenced by its protonation.


Assuntos
Simulação de Dinâmica Molecular , N-Glicosil Hidrolases/metabolismo , Pirimidinas/metabolismo , Teoria Quântica , Uridina/metabolismo , Biocatálise , Hidrólise , N-Glicosil Hidrolases/química , Pirimidinas/química , Uridina/química
13.
Sci Rep ; 7(1): 17265, 2017 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-29222497

RESUMO

Cholesterol oxidase (ChOx), a member of the glucose-methanol-choline (GMC) family, catalyzes the oxidation of the substrate via a hydride transfer mechanism and concomitant reduction of the FAD cofactor. Unlike other GMC enzymes, the conserved His447 is not the catalytic base that deprotonates the substrate in ChOx. Our QM/MM MD simulations indicate that the Glu361 residue acts as a catalytic base facilitating the hydride transfer from the substrate to the cofactor. We find that two rationally chosen point mutations (His447Gln and His447Asn) cause notable decreases in the catalytic activity. The binding free energy calculations show that the Glu361 and His447 residues are important in substrate binding. We also performed high-level double-hybrid density functional theory simulations using small model systems, which support the QM/MM MD results. Our work provides a basis for unraveling the substrate oxidation mechanism in GMC enzymes in which the conserved histidine does not act as a base.


Assuntos
Colesterol Oxidase/química , Colesterol Oxidase/metabolismo , Teoria da Densidade Funcional , Hidrogênio/química , Simulação de Dinâmica Molecular , Biocatálise , Domínio Catalítico , Ligação de Hidrogênio , Especificidade por Substrato , Termodinâmica
14.
J Nat Prod ; 80(4): 1182-1186, 2017 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-28256122

RESUMO

Bufospirostenin A (1) and bufogargarizin C (2), two novel steroids with rearranged A/B rings, were isolated from the toad Bufo bufo gargarizans. Compound 1 represents the first spirostanol found in animals. Compound 2 is an unusual bufadienolide with a cycloheptatriene B ring. Their structures were elucidated by spectroscopic analysis, single crystal X-ray diffraction analysis, and computational calculations.


Assuntos
Bufanolídeos/química , Bufanolídeos/isolamento & purificação , Bufo bufo , Animais , China , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular
15.
J Chem Inf Model ; 56(5): 877-85, 2016 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-27082764

RESUMO

The Mg-dependent 5-epi-aristolochene synthase from Nicotiana tabacum (called TEAS) could catalyze the linear farnesyl pyrophosphate (FPP) substrate to form bicyclic hydrocarbon 5-epi-aristolochene. The cyclization reaction mechanism of TEAS was proposed based on static crystal structures and quantum chemistry calculations in a few previous studies, but substrate FPP binding kinetics and protein conformational dynamics responsible for the enzymatic catalysis are still unclear. Herein, by elaborative and extensive molecular dynamics simulations, the loop conformation change and several crucial residues promoting the cyclization reaction in TEAS are elucidated. It is found that the unusual noncatalytic NH2-terminal domain is essential to stabilize Helix-K and the adjoining J-K loop of the catalytic COOH-terminal domain. It is also illuminated that the induce-fit J-K/A-C loop dynamics is triggered by Y527 and the optimum substrate binding mode in a "U-shape" conformation. The U-shaped ligand binding pose is maintained well with the cooperative interaction of the three Mg(2+)-containing coordination shell and conserved residue W273. Furthermore, the conserved Arg residue pair R264/R266 and aromatic residue pair Y527/W273, whose spatial orientations are also crucial to promote the closure of the active site to a hydrophobic pocket, as well as to form π-stacking interactions with the ligand, would facilitate the carbocation migration and electrophilic attack involving the catalytic reaction. Our investigation more convincingly proves the greater roles of the protein local conformational dynamics than do hints from the static crystal structure observations. Thus, these findings can act as a guide to new protein engineering strategies on diversifying the sesquiterpene products for drug discovery.


Assuntos
Alquil e Aril Transferases/química , Alquil e Aril Transferases/metabolismo , Simulação de Dinâmica Molecular , Nicotiana/enzimologia , Biocatálise , Ciclização , Domínios Proteicos
16.
J Chem Theory Comput ; 11(7): 3180-8, 2015 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-26575755

RESUMO

A full enzymatic catalysis cycle in the inosine-adenosine-guanosine specific nucleoside hydrolase (IAG-NH) was assumed to be comprised of four steps: substrate binding, chemical reaction, base release, and ribose release. Nevertheless, the mechanistic details for the rate-limiting step of the entire enzymatic reaction are still unknown, even though the ribose release was likely to be the most difficult stage. Based on state-of-the-art quantum mechanics and molecular mechanics (QM/MM) molecular dynamics (MD) simulations, the ribose release process can be divided into two steps: "ribose dissociation" and "ribose release". The "ribose dissociation" includes "cleavage" and "exchange" stages, in which a metastable 6-fold intermediate will recover to an 8-fold coordination shell of Ca(2+) as observed in apo- IAG-NH. Extensive random acceleration molecular dynamics and MD simulations have been employed to verify plausible release channels, and the estimated barrier for the rate-determining step of the entire reaction is 13.0 kcal/mol, which is comparable to the experimental value of 16.7 kcal/mol. Moreover, the gating mechanism arising from loop1 and loop2, as well as key residues around the active pocket, has been found to play an important role in manipulating the ribose release.


Assuntos
Simulação de Dinâmica Molecular , N-Glicosil Hidrolases/química , Teoria Quântica , Cálcio/química , Cálcio/metabolismo , Cinética , Modelos Moleculares , Conformação Molecular , N-Glicosil Hidrolases/metabolismo
17.
Molecules ; 20(9): 16491-523, 2015 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-26378511

RESUMO

The effect of a naphthalimide pharmacophore coupled with diverse substituents on the interaction between naphthalimide-polyamine conjugates 1-4 and bovine serum albumin (BSA) was studied by UV absorption, fluorescence and circular dichroism (CD) spectroscopy under physiological conditions (pH = 7.4). The observed spectral quenching of BSA by the compounds indicated that they could bind to BSA. Furthermore, caloric fluorescent tests revealed that the quenching mechanisms of compounds 1-3 were basically static type, but that of compound 4 was closer to a classical type. The Ksv values at room temperature for compound-BSA complexes-1-BSA, 2-BSA, 3-BSA and 4-BSA were 1.438 × 104, 3.190 × 104, 5.700 × 104 and 4.745 × 105, respectively, compared with the value of MINS, 2.863 × 104 at Ex = 280 nm. The obtained quenching constant, binding constant and thermodynamic parameter suggested that the binding between compounds 1-4 with BSA protein, significantly affected by the substituted groups on the naphthalene backbone, was formed by hydrogen bonds, and other principle forces mainly consisting of charged and hydrophobic interactions. Based on results from the analysis of synchronous three-dimensional fluorescence and CD spectra, we can conclude that the interaction between compounds 1-4 and BSA protein has little impact on the BSA conformation. Calculated results obtained from in silico molecular simulation showed that compound 1 did not prefer either enzymatic drug sites I or II over the other. However, DSII in BSA was more beneficial than DSI for the binding between compounds 2-4 and BSA protein. The binding between compounds 1-3 and BSA was hydrophobic in nature, compared with the electrostatic interaction between compound 4 and BSA.


Assuntos
Naftalimidas/química , Poliaminas/química , Soroalbumina Bovina/química , Animais , Bovinos , Ligação Proteica , Termodinâmica
18.
Angew Chem Int Ed Engl ; 54(30): 8693-6, 2015 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-26069216

RESUMO

The remarkable cyclization mechanism of the formation of the 6-6-6-5 tetracyclic lanosterol (a key triterpenoid intermediate in the biosynthesis of cholesterol) from the acyclic 2,3-oxidosqualene catalyzed by oxidosqualene cyclase (OSC) has stimulated the interest of chemists and biologists for over a half century. Herein, the elaborate, state-of-the-art two-dimensional (2D) QM/MM MD simulations have clearly shown that the cyclization of the A-C rings involves a nearly concerted, but highly asynchronous cyclization, to yield a stable intermediate with "6-6-5" rings followed by the ring expansion of the C-ring concomitant with the formation of the D-ring to yield the "6-6-6-5" protosterol cation. The calculated reaction barrier of the rate-limiting step (≈22 kcal mol(-1)) is comparable to the experimental kinetic results. Furthermore all previous experimental mutagenic evidence is highly consistent with the identified reaction mechanism.


Assuntos
Transferases Intramoleculares/metabolismo , Lanosterol/metabolismo , Esqualeno/análogos & derivados , Vias Biossintéticas , Ciclização , Humanos , Cinética , Lanosterol/química , Modelos Moleculares , Esqualeno/química , Esqualeno/metabolismo , Termodinâmica
19.
ACS Chem Biol ; 10(3): 687-92, 2015 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-25546141

RESUMO

Development of isoform-selective histone deacetylase (HDAC) inhibitors is of great biological and medical interest. Among 11 zinc-dependent HDAC isoforms, it is particularly challenging to achieve isoform inhibition selectivity between HDAC1 and HDAC2 due to their very high structural similarities. In this work, by developing and applying a novel de novo reaction-mechanism-based inhibitor design strategy to exploit the reactivity difference, we have discovered the first HDAC2-selective inhibitor, ß-hydroxymethyl chalcone. Our bioassay experiments show that this new compound has a unique time-dependent selective inhibition on HDAC2, leading to about 20-fold isoform-selectivity against HDAC1. Furthermore, our ab initio QM/MM molecular dynamics simulations, a state-of-the-art approach to study reactions in biological systems, have elucidated how the ß-hydroxymethyl chalcone can achieve the distinct time-dependent inhibition toward HDAC2.


Assuntos
Chalconas/química , Desenho de Fármacos , Histona Desacetilase 1/química , Histona Desacetilase 2/antagonistas & inibidores , Inibidores de Histona Desacetilases/química , Sítios de Ligação , Chalconas/síntese química , Desenho Assistido por Computador , Descoberta de Drogas , Histona Desacetilase 2/química , Inibidores de Histona Desacetilases/síntese química , Humanos , Ligação de Hidrogênio , Cinética , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica , Fatores de Tempo
20.
Phys Chem Chem Phys ; 16(48): 26864-75, 2014 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-25375265

RESUMO

Hydroxynitrile lyases (HNLs) defend plants from herbivores and microbial attack by releasing cyanide from hydroxynitriles. The reverse process has been productively applied to bioorganic syntheses of pharmaceuticals and agrochemicals. To improve our understanding of the catalytic mechanism of HNLs, extensive ab initio QM/MM and classical MM molecular dynamics simulations have been performed to explore the catalytic conversion of cyanohydrins into aldehyde (or ketone) and HCN by hydroxynitrile lyases from Hevea brasiliensis (HbHNLs). It was found that the catalytic reaction approximately follows a two-stage mechanism. The first stage involves two fast processes including the proton abstraction of the substrate through a double-proton transfer and the C-CN bond cleavage, while the second stage concerns HCN formation and is rate-determining. The complete free energy profile exhibits a peak of ∼18 kcal mol(-1). Interestingly, the protonation state of Lys236 influences the efficiency of the enzyme only to some extent, but it changes the entire catalytic mechanism. The dynamical behaviors of substrate delivery and HCN release are basically modulated by the gate movement of Trp128. The remarkable exothermicity of substrate binding and the facile release of HCN may drive the enzyme-catalyzed reaction to proceed along the substrate decomposition efficiently. Computational mutagenesis reveals the key residues which play an important role in the catalytic process.


Assuntos
Aldeído Liases/metabolismo , Hevea/enzimologia , Acetona/metabolismo , Aldeído Liases/química , Sítios de Ligação , Domínio Catalítico , Hevea/química , Simulação de Dinâmica Molecular , Nitrilas/metabolismo , Prótons , Especificidade por Substrato , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...