Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 329(5989): 293, 2010 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-20647459

RESUMO

Genetic crosses in many organisms have shown that alleles of unlinked genes generally assort independently of one another during gamete formation. However, variation in chromosome size may affect the process of meiosis and lead to nonindependent assortment of chromosomes. We therefore examined chromosomes with insertions and found that they preferentially segregated away from the X chromosome during meiosis in Caenorhabditis elegans males. Conversely, chromosomes with deletions preferentially segregated with the X chromosome. The degree of segregation bias was significantly associated with the length of the insertion or deletion. Simulations revealed that this segregation bias leads to genome size reduction in hermaphroditic species, a pattern consistent with differences in genome sizes in the genus Caenorhabditis. These results suggest that insertions and deletions may affect chromosome segregation patterns.


Assuntos
Caenorhabditis elegans/genética , Segregação de Cromossomos , Cromossomos/genética , Genoma , Meiose , Animais , Caenorhabditis elegans/fisiologia , Deleção Cromossômica , Transtornos do Desenvolvimento Sexual , Feminino , Mutação INDEL , Masculino , Mutagênese Insercional , Transgenes , Cromossomo X/genética
2.
Development ; 133(2): 287-95, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16354718

RESUMO

We used mRNA tagging to identify genes expressed in the intestine of C. elegans. Animals expressing an epitope-tagged protein that binds the poly-A tail of mRNAs (FLAG::PAB-1) from an intestine-specific promoter (ges-1) were used to immunoprecipitate FLAG::PAB-1/mRNA complexes from the intestine. A total of 1938 intestine-expressed genes (P<0.001) were identified using DNA microarrays. First, we compared the intestine-expressed genes with those expressed in the muscle and germline, and identified 510 genes enriched in all three tissues and 624 intestine-, 230 muscle- and 1135 germ line-enriched genes. Second, we showed that the 1938 intestine-expressed genes were physically clustered on the chromosomes, suggesting that the order of genes in the genome is influenced by the effect of chromatin domains on gene expression. Furthermore, the commonly expressed genes showed more chromosomal clustering than the tissue-enriched genes, suggesting that chromatin domains may influence housekeeping genes more than tissue-specific genes. Third, in order to gain further insight into the regulation of intestinal gene expression, we searched for regulatory motifs. This analysis found that the promoters of the intestine genes were enriched for the GATA transcription factor consensus binding sequence. We experimentally verified these results by showing that the GATA motif is required in cis and that GATA transcription factors are required in trans for expression of these intestinal genes.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Fatores de Transcrição GATA/genética , Genes de Helmintos , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Cromossomos/genética , Fatores de Transcrição GATA/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Células Germinativas/metabolismo , Mucosa Intestinal/metabolismo , Família Multigênica , Músculos/metabolismo , Mutagênese Sítio-Dirigida , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...