Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Plant Biol ; 20(1): 505, 2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-33148168

RESUMO

BACKGROUND: Tartary buckwheat has gained popularity in the food marketplace due to its abundant nutrients and high bioactive flavonoid content. However, its difficult dehulling process has severely restricted its food processing industry development. Rice-tartary buckwheat, a rare local variety, is very easily dehulled, but the cellular, physiological and molecular mechanisms responsible for this easy dehulling remains largely unclear. RESULTS: In this study, we integrated analyses of the comparative cellular, physiological, transcriptome, and gene coexpression network to insight into the reason that rice-tartary buckwheat is easy to dehull. Compared to normal tartary buckwheat, rice-tartary buckwheat has significantly brittler and thinner hull, and thinner cell wall in hull sclerenchyma cells. Furthermore, the cellulose, hemicellulose, and lignin contents of rice-tartary buckwheat hull were significantly lower than those in all or part of the tested normal tartary buckwheat cultivars, respectively, and the significant difference in cellulose and hemicellulose contents between rice-tartary buckwheat and normal tartary buckwheat began at 10 days after pollination (DAP). Comparative transcriptome analysis identified a total of 9250 differentially expressed genes (DEGs) between the rice- and normal-tartary buckwheat hulls at four different development stages. Weighted gene coexpression network analysis (WGCNA) of all DEGs identified a key module associated with the formation of the hull difference between rice- and normal-tartary buckwheat. In this specific module, many secondary cell wall (SCW) biosynthesis regulatory and structural genes, which involved in cellulose and hemicellulose biosynthesis, were identified as hub genes and displayed coexpression. These identified hub genes of SCW biosynthesis were significantly lower expression in rice-tartary buckwheat hull than in normal tartary buckwheat at the early hull development stages. Among them, the expression of 17 SCW biosynthesis relative-hub genes were further verified by quantitative real-time polymerase chain reaction (qRT-PCR). CONCLUSIONS: Our results showed that the lower expression of SCW biosynthesis regulatory and structural genes in rice-tartary buckwheat hull in the early development stages contributes to its easy dehulling by reducing the content of cell wall chemical components, which further effects the cell wall thickness of hull sclerenchyma cells, and hull thickness and mechanical strength.


Assuntos
Grão Comestível/metabolismo , Fagopyrum/metabolismo , Manipulação de Alimentos , Celulose/análise , Grão Comestível/química , Grão Comestível/citologia , Grão Comestível/fisiologia , Fagopyrum/citologia , Fagopyrum/genética , Fagopyrum/fisiologia , Perfilação da Expressão Gênica , Genes de Plantas , Polissacarídeos/análise , Transcriptoma
2.
PLoS One ; 8(12): e83530, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24349528

RESUMO

Wheat (Triticum aestivum L.) is one of the most important crops cultivated worldwide. Identifying the complete transcriptome of wheat grain could serve as foundation for further study of wheat seed development. However, the relatively large size and the polyploid complexity of the genome have been substantial barriers to molecular genetics and transcriptome analysis of wheat. Alternatively, RNA sequencing has provided some useful information about wheat genes. However, because of the large number of short reads generated by RNA sequencing, factors that are crucial to transcriptome assembly, including software, candidate parameters and assembly strategies, need to be optimized and evaluated for wheat data. In the present study, four cDNA libraries associated with wheat grain development were constructed and sequenced. A total of 14.17 Gb of high-quality reads were obtained and used to assess different assembly strategies. The most successful approach was to filter the reads with Q30 prior to de novo assembly using Trinity, merge the assembled contigs with genes available in wheat cDNA reference data sets, and combine the resulting assembly with an assembly from a reference-based strategy. Using this approach, a relatively accurate and nearly complete transcriptome associated with wheat grain development was obtained, suggesting that this is an effective strategy for generation of a high-quality transcriptome from RNA sequencing data.


Assuntos
Genoma de Planta , RNA de Plantas/genética , Análise de Sequência de RNA , Software , Triticum/genética
3.
J Integr Plant Biol ; 51(1): 93-9, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19166499

RESUMO

The high molecular weight glutenin subunits (HMW-GSs) are a major class of common wheat storage proteins. The bread-making quality of common wheat flour is influenced by the composition of HMW-GSs. In the present study, two unexpressed 1By genes from Triticum aesitvum L.ssp.yunnanese AS332 and T. aesitvum ssp.tibetanum AS908 were respectively cloned and characterized. The results indicated that both of the silenced 1By genes in AS332 and AS908 were 1By9. In contrast to previously reported mechanisms for silenced genes 1Ax and 1Ay, which was due to the insertion of transposon elements or the presence of premature stop codon via base substitution of C-->T transition in trinucleotides CAA or CAG, the silence of 1By9 genes was caused by premature stop codons via the deletion of base A in trinucleotide CAA, which lead to frameshift mutation and indirectly produced several premature stop codons (TAG) downstream of the coding sequence.


Assuntos
Inativação Gênica , Genes de Plantas , Glutens/genética , Triticum/genética , Alelos , Sequência de Aminoácidos , Sequência de Bases , Eletroforese em Gel de Poliacrilamida , Glutens/análise , Glutens/química , Dados de Sequência Molecular , Peso Molecular , Fases de Leitura Aberta/genética , Reação em Cadeia da Polimerase , Subunidades Proteicas/análise , Subunidades Proteicas/química , Subunidades Proteicas/genética , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...