Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38275144

RESUMO

Phenyl ditelluride (PDTe) as a cathode material for rechargeable batteries has a low specific capacity (130.9 mAh g-1) due to limited active sites (two). To increase its capacity, additional active species need to be added to the structure of PDTe, like sulfur. Here, phenyl tellurosulfide (PDTeS) and phenyl tellurodisulfide (PDTeS2) can be formed via addition reactions and have specific capacities of 242.8 and 339.6 mAh g-1, respectively. The products are characterized by mass spectrometry and Raman spectroscopy. The Li/PDTeSn (n = 1-2) cells exhibit high material utilization (>85%) and unique redox mechanism. They can be cycled stably for more than 1000 cycles at an areal mass loading of 1.1 mg cm-2 and maintain capacity retentions of >72% after 100 cycles with PDTeSn loading of ∼6 mg cm-2. Moreover, the Li/PDTeS2 cell achieves a specific energy of up to 695 Wh kg-1 even when the electrolyte/PDTeS2 ratio is as low as 2.5 µL mg-1. The successful synthesis and application of PDTeSn prove that they are promising cathode materials for rechargeable lithium batteries.

2.
Chem Commun (Camb) ; 58(78): 10993-10996, 2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36093763

RESUMO

Phenyl tellurosulfide (PhS-TePh) was used to study the redox activity of the S-Te bond in lithium batteries. PhS-TePh formed a dynamic covalent network during lithiation, which provided a balance between responsiveness and stability to facilitate ion and electron transfer, enabling Li/PhS-TePh cells to achieve stable cycling and excellent rate performance in dilute electrolyte.


Assuntos
Fontes de Energia Elétrica , Lítio , Eletrólitos/química , Íons , Lítio/química , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...