Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 447: 139080, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38520904

RESUMO

Targeted metabolomics combined with chemometrics were applied to investigate the flavor profiles of 4 white tea samples, which were produced from different maturity fresh tea leaves with different withering methods. Mature leaves that underwent novel withering process at higher temperature (28-30℃) and humidity (75 ± 3 %) (MN) were characterized by intense milky flavor. The content of free amino acids, catechins, and soluble sugars in MN were significantly lower than that in the other 3 tea samples, resulting in a sweet and mellow taste with low bitterness. Meanwhile, MN possessed the highest intensity of milky aroma, which could be mainly attributed to the existence of dihydro-5-pentyl-2(3H)-furanone and 2-pentyl-furan as the key volatile substances with coconut and creamy fragrance. These findings provide insight into the substance foundations of milky flavor, and identified leaf maturity and processing method as the determining factors of the milk-flavored white tea (MFWT).


Assuntos
Camellia sinensis , Catequina , Camellia sinensis/química , Chá/química , Metabolômica/métodos , Catequina/análise , Odorantes/análise , Folhas de Planta/química
2.
Food Chem X ; 18: 100710, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37397202

RESUMO

White tea is a mildly fermented tea processed with withering and drying. Milk-flavored white tea has a unique milk flavor compared to the traditional white tea. Little is known about the aromas that make white tea taste milky. Here we conducted the volatile profiling via headspace solid-phase microextraction (HS-SPME)-gas chromatography-time-of-flight mass spectrometry (GC-TOFMS) and chemometrics to explore the key volatiles making milk-flavored white tea taste milky. Sixty-seven volatiles were identified, with 7 volatiles (OAV > 1 and VIP > 1) were characterized as the typical aromas. Green and light fruity scent volatiles, such as methyl salicylate, benzyl alcohol, and phenylethyl alcohol, were richer in TFs than MFs. Strong fruity and cheese aromas, such as dihydro-5-pentyl-2(3H)-furanone, 2-pentyl-furan, (E)-6,10-dimethyl-5,9-undecadien-2-one, and hexanal, were more abundant in MFs than TFs. Dihydro-5-pentyl-2(3H)-furanone, recognized as coconut and creamy aroma, should be the essential volatile for milky flavor. Also, (E)-6,10-dimethyl-5,9-undecadien-2-one and 2-pentyl-furan may contribute to the milk scent formation.

3.
PeerJ ; 11: e14869, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36785711

RESUMO

Sugar metabolites not only act as the key compounds in tea plant response to stress but are also critical for tea quality formation during the post-harvest processing of tea leaves. However, the mechanisms by which sugar metabolites in post-harvest tea leaves respond to mechanical stress are unclear. In this study, we aimed to investigate the effects of mechanical stress on saccharide metabolites and related post-harvest tea genes. Withered (C15) and mechanically-stressed (V15) for 15 min Oolong tea leaves were used for metabolome and transcriptome sequencing analyses. We identified a total of 19 sugar metabolites, most of which increased in C15 and V15. A total of 69 genes related to sugar metabolism were identified using transcriptome analysis, most of which were down-regulated in C15 and V15. To further understand the relationship between the down-regulated genes and sugar metabolites, we analyzed the sucrose and starch, galactose, and glycolysis metabolic pathways, and found that several key genes of invertase (INV), α-amylase (AMY), ß-amylase (BMY), aldose 1-epimerase (AEP), and α-galactosidase (AGAL) were down-regulated. This inhibited the hydrolysis of sugars and might have contributed to the enrichment of galactose and D-mannose in V15. Additionally, galactinol synthase (Gols), raffinose synthase (RS), hexokinase (HXK), 6-phosphofructokinase 1 (PFK-1), and pyruvate kinase (PK) genes were significantly upregulated in V15, promoting the accumulation of D-fructose-6-phosphate (D-Fru-6P), D-glucose-6-phosphate (D-glu-6P), and D-glucose. Transcriptome and metabolome association analysis showed that the glycolysis pathway was enhanced and the hydrolysis rate of sugars related to hemicellulose synthesis slowed in response to mechanical stress. In this study, we explored the role of sugar in the response of post-harvest tea leaves to mechanical stress by analyzing differences in the expression of sugar metabolites and related genes. Our results improve the understanding of post-harvest tea's resistance to mechanical stress and the associated mechanism of sugar metabolism. The resulting treatment may be used to control the quality of Oolong tea.


Assuntos
Camellia sinensis , Camellia sinensis/genética , Transcriptoma/genética , Galactose/metabolismo , Estresse Mecânico , Perfilação da Expressão Gênica , Chá/metabolismo , Açúcares/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...