Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Trends Microbiol ; 2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39218723

RESUMO

Conventional bulk molecular approaches, often limited by their destructive nature and low spatial resolution, face challenges when probing the intricate dynamics of the plastisphere. Here, we outline a framework employing Raman spectroscopy combined with stable isotope profiling (SIP) to interrogate the physiological function of the plastisphere microbiome and track its evolutionary trajectories.

2.
Glob Chang Biol ; 30(8): e17466, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39152655

RESUMO

Global patterns in soil microbiomes are driven by non-linear environmental thresholds. Fertilization is known to shape the soil microbiome of terrestrial ecosystems worldwide. Yet, whether fertilization influences global thresholds in soil microbiomes remains virtually unknown. Here, utilizing optimized machine learning models with Shapley additive explanations on a dataset of 10,907 soil samples from 24 countries, we discovered that the microbial community response to fertilization is highly dependent on environmental contexts. Furthermore, the interactions among nitrogen (N) addition, pH, and mean annual temperature contribute to non-linear patterns in soil bacterial diversity. Specifically, we observed positive responses within a soil pH range of 5.2-6.6, with the influence of higher temperature (>15°C) on bacterial diversity being positive within this pH range but reversed in more acidic or alkaline soils. Additionally, we revealed the threshold effect of soil organic carbon and total nitrogen, demonstrating how temperature and N addition amount interacted with microbial communities within specific edaphic concentration ranges. Our findings underscore how complex environmental interactions control soil bacterial diversity under fertilization.


Assuntos
Bactérias , Fertilizantes , Microbiota , Nitrogênio , Microbiologia do Solo , Solo , Temperatura , Nitrogênio/análise , Nitrogênio/metabolismo , Fertilizantes/análise , Concentração de Íons de Hidrogênio , Solo/química , Carbono/análise , Carbono/metabolismo , Aprendizado de Máquina , Biodiversidade
3.
Sci Total Environ ; 950: 175274, 2024 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-39117190

RESUMO

Rising instances of flash droughts are contributing to notable variability in soil moisture across terrestrial ecosystems. These phenomena challenge urban ecosystem services, yet the reaction of soil ecological functions (SEFs) to such events is poorly understood. This study investigates the responses of SEFs (about nutrient metabolism capacity and potential) and the microbiome under two specific scenarios: a flooding-drought sequence and a direct drought condition. Using quantitative microbial element cycling analysis, high-throughput sequencing, and enzyme activity measurements, we found that unlike in forests, the microbial composition in urban soils remained unchanged during flash drought conditions. However, SEFs were affected in both settings. Correlation analysis and Mantel test showed that forest soils exhibited more complex interactions among soil moisture, properties, and microbial communities. Positive linear correlation revealed that bacteria were the sole drivers of SEFs. Interestingly, while multi-threshold results suggested bacterial α diversity impeded the maximization of SEFs in urban soils, fungi and protists had a beneficial impact. Cross-domain network of urban soils had higher number of nodes and edges, but lower average degree and robustness than forest soils. Mantel test revealed that fungi and protist had significant correlations with bacterial composition in forest soils, but not in urban soils. In the urban network, the degree and eigenvector centrality of bacterial, fungal and protistan ASVs were significantly lower compared to those in the forest. These results suggest that the lower robustness of the microbial network in urban soils is attributed to limited interactions among fungi, consumer protists, and bacteria, contributing to the failure of microbial-driven ecological functions. Overall, our findings emphasize the critical role of fungi and protists in shielding urban soils from drought-induced disturbances and in enhancing the resistance of urban ecological functions amidst environmental changes.


Assuntos
Secas , Fungos , Microbiota , Microbiologia do Solo , Solo , Solo/química , Ecossistema , Eucariotos , Cidades , Florestas , Bactérias/classificação
4.
Nat Food ; 5(8): 673-683, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39103543

RESUMO

Phosphate-solubilizing bacteria (PSB) are crucial for enhancing phosphorus bioavailability and regulating phosphorus transformation processes. However, the in situ phosphorus-solubilizing activity and the link between phenotypes and genotypes for PSB remain unidentified. Here we employed single-cell Raman spectroscopy combined with heavy water to discern and quantify soil active PSB. Our results reveal that PSB abundance and in situ activity differed significantly between soil types and fertilization treatments. Inorganic fertilizer input was the key driver for active PSB distribution. Targeted single-cell sorting and metagenomic sequencing of active PSB uncovered several low-abundance genera that are easily overlooked within bulk soil microbiota. We elucidate the underlying functional genes and metabolic pathway, and the interplay between phosphorus and carbon cycling involved in high phosphorus solubilization activity. Our study provides a single-cell approach to exploring PSB from native environments, enabling the development of a microbial solution for the efficient agronomic use of phosphorus and mitigating the phosphorus crisis.


Assuntos
Bactérias , Fertilizantes , Fosfatos , Fósforo , Microbiologia do Solo , Solo , Fósforo/metabolismo , Bactérias/metabolismo , Bactérias/genética , Fosfatos/metabolismo , Solo/química , Fertilizantes/análise , Análise de Célula Única , Microbiota/fisiologia , Solubilidade
5.
Anal Chem ; 96(28): 11374-11382, 2024 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-38949233

RESUMO

Plastic pollution represents a critical threat to soil ecosystems and even humans, as plastics can serve as a habitat for breeding and refuging pathogenic microorganisms against stresses. However, evaluating the health risk of plastispheres is difficult due to the lack of risk factors and quantification model. Here, DNA sequencing, single-cell Raman-D2O labeling, and transformation assay were used to quantify key risk factors of plastisphere, including pathogen abundance, phenotypic resistance to various stresses (antibiotic and pesticide), and ability to acquire antibiotic resistance genes. A Bayesian network model was newly introduced to integrate these three factors and infer their causal relationships. Using this model, the risk of pathogen in the plastisphere is found to be nearly 3 magnitudes higher than that in free-living state. Furthermore, this model exhibits robustness for risk prediction, even in the absence of one factor. Our framework offers a novel and practical approach to assessing the health risk of plastispheres, contributing to the management of plastic-related threats to human health.


Assuntos
Teorema de Bayes , Bactérias/genética , Bactérias/isolamento & purificação , Fenótipo , Microbiologia do Solo , Humanos , Antibacterianos/farmacologia
6.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-39073904

RESUMO

Antibiotic resistance in plant-associated microbiomes poses significant risks for agricultural ecosystems and human health. Although accumulating evidence suggests a role for plant genotypes in shaping their microbiome, almost nothing is known about how the changes of plant genetic information affect the co-evolved plant microbiome carrying antibiotic resistance genes (ARGs). Here, we selected 16 wheat cultivars and experimentally explored the impact of host genetic variation on phyllosphere microbiome, ARGs, and metabolites. Our results demonstrated that host genetic variation significantly influenced the phyllosphere resistomes. Wheat genotypes exhibiting high phyllosphere ARGs were linked to elevated Pseudomonas populations, along with increased abundances of Pseudomonas aeruginosa biofilm formation genes. Further analysis of 350 Pseudomonas spp. genomes from diverse habitats at a global scale revealed that nearly all strains possess multiple ARGs, virulence factor genes (VFGs), and mobile genetic elements (MGEs) on their genomes, albeit with lower nucleotide diversity compared to other species. These findings suggested that the proliferation of Pseudomonas spp. in the phyllosphere significantly contributed to antibiotic resistance. We further observed direct links between the upregulated leaf metabolite DIMBOA-Glc, Pseudomonas spp., and enrichment of phyllosphere ARGs, which were corroborated by microcosm experiments demonstrating that DIMBOA-Glc significantly enhanced the relative abundance of Pseudomonas spp. Overall, alterations in leaf metabolites resulting from genetic variation throughout plant evolution may drive the development of highly specialized microbial communities capable of enriching phyllosphere ARGs. This study enhances our understanding of how plants actively shape microbial communities and clarifies the impact of host genetic variation on the plant resistomes.


Assuntos
Variação Genética , Microbiota , Folhas de Planta , Pseudomonas , Triticum , Triticum/microbiologia , Folhas de Planta/microbiologia , Pseudomonas/genética , Pseudomonas/metabolismo , Fatores de Virulência/genética , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Genótipo , Resistência Microbiana a Medicamentos/genética , Biofilmes/crescimento & desenvolvimento , Farmacorresistência Bacteriana/genética
7.
Environ Int ; 190: 108846, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38925006

RESUMO

Natural environments play a crucial role in transmission of antimicrobial resistance (AMR). Development of methods to manage antibiotic resistance genes (ARGs) in natural environments are usually limited to the laboratory or field scale, partially due to the complex dynamics of transmission between different environmental compartments. Here, we conducted a nine-year longitudinal profiling of ARGs at a watershed scale, and provide evidence that restrictions on livestock farms near water bodies significantly reduced riverine ARG abundance. Substantial reductions were revealed in the relative abundance of genes conferring resistance to aminoglycosides (42%), MLSB (36%), multidrug (55%), tetracyclines (53%), and other gene categories (59%). Additionally, improvements in water quality were observed, with distinct changes in concentrations of dissolved reactive phosphorus, ammonium, nitrite, pH, and dissolved oxygen. Antibiotic residues and other pharmaceuticals and personal care products (PPCPs) maintain at a similarly low level. Microbial source tracking demonstrates a significant decrease in swine fecal indicators, while human fecal pollution remains unchanged. These results suggest that the reduction in ARGs was due to a substantial reduction in input of antibiotic resistant bacteria and genes from animal excreta. Our findings highlight the watershed as a living laboratory for understanding the dynamics of AMR, and for evaluating the efficacy of environmental regulations, with implications for reducing environmental risks associated with AMR on a global scale.


Assuntos
Antibacterianos , Fazendas , Gado , Animais , Antibacterianos/farmacologia , Suínos , Resistência Microbiana a Medicamentos/genética , Farmacorresistência Bacteriana/genética , Fezes/microbiologia , Criação de Animais Domésticos/métodos , Qualidade da Água , Monitoramento Ambiental
8.
Environ Int ; 187: 108649, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38642506

RESUMO

Rapid urbanization in the Asia-Pacific region is expected to place two-thirds of its population in concrete-dominated urban landscapes by 2050. While diverse architectural facades define the unique appearance of these urban systems. There remains a significant gap in our understanding of the composition, assembly, and ecological potential of microbial communities on building exteriors. Here, we examined bacterial and protistan communities on building surfaces along an urbanization gradient (urban, suburban and rural regions), investigating their spatial patterns and the driving factors behind their presence. A total of 55 bacterial and protist phyla were identified. The bacterial community was predominantly composed of Proteobacteria (33.7% to 67.5%). The protistan community exhibited a prevalence of Opisthokonta and Archaeplastida (17.5% to 82.1% and 1.8% to 61.2%, respectively). The composition and functionality of bacterial communities exhibited spatial patterns correlated with urbanization. In urban buildings, factors such as facade type, light exposure, and building height had comparatively less impact on bacterial composition compared to suburban and rural areas. The highest bacterial diversity and lowest Weighted Average Community Identity (WACI) were observed on suburban buildings, followed by rural buildings. In contrast, protists did not show spatial distribution characteristics related to facade type, light exposure, building height and urbanization level. The distinct spatial patterns of protists were primarily shaped by community diffusion and the bottom-up regulation exerted by bacterial communities. Together, our findings suggest that building exteriors serve as attachment points for local microbial metacommunities, offering unique habitats where bacteria and protists exhibit independent adaptive strategies closely tied to the overall ecological potential of the community.


Assuntos
Bactérias , Urbanização , Bactérias/classificação , Microbiota
9.
Environ Int ; 187: 108688, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38685158

RESUMO

The phyllosphere, particularly the leaf surface of plants, harbors a diverse range of microbiomes that play a vital role in the functioning of terrestrial ecosystems. However, our understanding of microbial successions and their impact on functional genes during plant community development is limited. In this study, considering core and satellite microbial taxa, we characterized the phyllosphere microbiome and functional genes in various microhabitats (i.e., leaf litter, moss and plant leaves) across the succession of a plant community in a low-altitude glacier foreland. Our findings indicate that phyllosphere microbiomes and associated ecosystem stability increase during the succession of the plant community. The abundance of core taxa increased with plant community succession and was primarily governed by deterministic processes. In contrast, satellite taxa abundance decreased during plant community succession and was mainly governed by stochastic processes. The abundance of microbial functional genes (such as C, N, and P hydrolysis and fixation) in plant leaves generally increased during the plant community succession. However, in leaf litter and moss leaves, only a subset of functional genes (e.g., C fixation and degradation, and P mineralization) showed a tendency to increase with plant community succession. Ultimately, the community of both core and satellite taxa collaboratively influenced the characteristics of phyllosphere nutrient-cycling genes, leading to the diverse profiles and fluctuating abundance of various functional genes during plant community succession. These findings offer valuable insights into the phyllosphere microbiome and plant-microbe interactions during plant community development, advancing our understanding of the succession and functional significance of the phyllosphere microbial community.


Assuntos
Microbiota , Folhas de Planta , Folhas de Planta/microbiologia , Ecossistema , Plantas/microbiologia , Desenvolvimento Vegetal
10.
Environ Int ; 185: 108511, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38382404

RESUMO

Fungal plant pathogens threaten crop production and sustainable agricultural development. However, the environmental factors driving their diversity and nationwide biogeographic model remain elusive, impacting our capacity to predict their changes under future climate scenarios. Here, we analyzed potential fungal plant pathogens from 563 samples collected from 57 agricultural fields across China. Over 28.0% of fungal taxa in the phyllosphere were identified as potential plant pathogens, compared to 22.3% in the rhizosphere. Dominant fungal plant pathogen groups were Cladosporium (in the phyllosphere) and Fusarium (in the rhizosphere), with higher diversity observed in the phyllosphere than in rhizosphere soil. Deterministic processes played an important role in shaping the potential fungal plant pathogen community assembly in both habitats. Mean annual precipitation and temperature were the most important factor influencing phyllosphere fungal plant pathogen richness. Significantly negative relationships were found between fungal pathogen diversity and sorghum yield. Notably, compared to the rhizosphere, the phyllosphere fungal plant pathogen diversity played a more crucial role in sorghum yield. Together, our work provides novel insights into the factors governing the spatial patterns of fungal plant pathogens in the crop microbiome, and highlights the potential significance of aboveground phyllosphere fungal plant pathogens in crop productivity.


Assuntos
Microbiota , Sorghum , Microbiologia do Solo , Agricultura , Solo , Grão Comestível
11.
J Hazard Mater ; 465: 133149, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38056267

RESUMO

The microbiome in the air-phyllosphere-soil continuum of urban greenspaces plays a crucial role in re-connecting urban populations with biodiverse environmental microbiomes. However, little is known about whether plant type affects the airborne microbiomes, as well as the extent to which soil and phyllosphere microbiomes contribute to airborne microbiomes. Here we collected soil, phyllosphere and airborne microbes with different plant types (broadleaf tree, conifer tree, and grass) in urban parks. Despite the significant impacts of plant type on soil and phyllosphere microbiomes, plant type had no obvious effects on the diversity of airborne microbes but shaped airborne bacterial composition in urban greenspaces. Soil and phyllosphere microbiomes had a higher contribution to airborne bacteria in broadleaf trees (37.56%) compared to conifer trees (9.51%) and grasses (14.29%). Grass areas in urban greenspaces exhibited a greater proportion of potential pathogens compared to the tree areas. The abundance of bacterial pathogens in phyllosphere was significantly higher in grasses compared to broadleaf and conifer trees. Together, our study provides novel insights into the microbiome patterns in air-phyllosphere-soil continuum, highlighting the potential significance of reducing the proportion of extensively human-intervened grass areas in future urban environment designs to enhance the provision of ecosystem services in urban greenspaces.


Assuntos
Microbiota , Solo , Humanos , Parques Recreativos , Plantas , Árvores/microbiologia , Bactérias , Poaceae
12.
ISME J ; 17(12): 2182-2189, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37794244

RESUMO

Understanding how antibiotic resistance emerges and evolves in natural habitats is critical for predicting and mitigating antibiotic resistance in the context of global change. Bacteria have evolved antibiotic production as a strategy to fight competitors, predators and other stressors, but how predation pressure of their most important consumers (i.e., protists) affects soil antibiotic resistance genes (ARGs) profiles is still poorly understood. To address this gap, we investigated responses of soil resistome to varying levels of protistan predation by inoculating low, medium and high concentrations of indigenous soil protist suspensions in soil microcosms. We found that an increase in protistan predation pressure was strongly associated with higher abundance and diversity of soil ARGs. High protist concentrations significantly enhanced the abundances of ARGs encoding multidrug (oprJ and ttgB genes) and tetracycline (tetV) efflux pump by 608%, 724% and 3052%, respectively. Additionally, we observed an increase in the abundance of numerous bacterial genera under high protistan pressure. Our findings provide empirical evidence that protistan predation significantly promotes antibiotic resistance in soil bacterial communities and advances our understanding of the biological driving forces behind the evolution and development of environmental antibiotic resistance.


Assuntos
Genes Bacterianos , Solo , Animais , Comportamento Predatório , Microbiologia do Solo , Bactérias/genética , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/genética , Eucariotos/genética
13.
Environ Int ; 179: 108168, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37647704

RESUMO

Rice paddy soil is a hotspot of antibiotic resistance genes (ARGs) due to the application of organic fertilizers. However, the temporal dynamics of ARGs in rice paddy soil and its flooded water during the growing season remain underexplored. In this study, a microcosm experiment was conducted to explore the ARG profiles in a long term (130 days) flooded two-phase manure-amended soil-water system. By using high-throughput quantitative PCR array, a total of 23-98 and 34-85 ARGs were detected in the soil and overlying water, respectively. Regression analysis exhibited significant negative correlations between ARG profile similarities and flooding duration, indicating that flooding significantly altered the resistome (P < 0.001). This finding was validated by the increased ARG abundance in the soil and the overlying water, for example, after 130 days flooding, the abundance of ARGs in CK soil was increased from 0.03 to 1.20 copies per 16S rRNA. The PCoA analysis further suggested pig manure application resulted in distinct ARG profiles in the soil-water continuum compared with those of the non-amended control (Adonis, P < 0.05). The Venn diagram showed that all ARGs detected in the pig manure were present in the treated soil. Twelve ARGs (e.g., sul1) were shared among the pig manure, manure-amended soil, and overlying water, indicating that certain manure- or soil-borne ARGs were readily dispersed from the soil to the overlying water. Moreover, the enhanced relationships between the ARGs and mobile genetic elements in pig manure applied soil-water continuum indicate that the application of organic matter could accelerate the emergence and dissemination of ARGs. These findings suggested that flooding represents a crucial pathway for dispersal of ARGs from the soil to the overlying water. Identification of highly mobile ARGs in the soil-water continuum is essential for assessing their potential risk to human health and promoting the development of sustainable agricultural practices to mitigate their spread.


Assuntos
Oryza , Solo , Humanos , Animais , Suínos , Esterco , RNA Ribossômico 16S , Antibacterianos , Resistência Microbiana a Medicamentos/genética , Água
14.
Environ Sci Technol ; 57(30): 11267-11278, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37477285

RESUMO

The widespread occurrence of tire tread particles (TPs) has aroused increasing concerns over their impacts. However, how they affect the soil fauna remains poorly understood. Here, based on systematically assessing the toxicity of TPs on soil model speciesEnchytraeus crypticusat environmentally relevant concentrations through both soil and food exposure routes, we reported that TPs affected gut microbiota, intestinal histopathology, and metabolites of the worms both through particulate- and leachate-induced effects, while TP leachates exerted stronger effects. The dominant role of TP leachates in TP toxicity was further explained by the findings that worms did not ingest TPs with a particle size of over 150 µm and actively avoided consuming TP particles. Moreover, by comparing the effects of different brands of TPs as well as new and aged TPs, we demonstrated that it was mainly TP leachates that resulted in the ubiquity of the disturbance in the worm's gut microbiota among different brands of TPs. Notably, the large variations in leachate compositions among different brands of TPs provided us a unique opportunity to identify the determinants of TP toxicity. These results provide novel insights into the toxicity of TPs to soil fauna and a reference for toxicity reduction of tires.


Assuntos
Microbioma Gastrointestinal , Poeira , Tamanho da Partícula , Solo
15.
Environ Microbiol Rep ; 15(4): 298-307, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36992636

RESUMO

Protists occupy multiple trophic positions in soil food webs and significantly contribute to organic matter decomposition and biogeochemical cycling. Protists can ingest bacteria and fungi as main food sources while being subjected to predation of invertebrates, but our understanding of how bottom-up and top-down regulations structure protists in natural soil habitats is limited. Here, we disentangle the effects of trophic regulations to the diversity and structure of soil protists in natural settings across northern and eastern Australia. Bacterial and invertebrate diversity were identified as important drivers of the diversity of functional groups of protists. Moreover, the compositions of protistan taxonomic and functional groups were better predicted by bacteria and fungi, than by soil invertebrates. There were strong trophic interconnections between protists and bacteria in multiple organismic network analysis. Altogether, the study provided new evidence that, bottom-up control of bacteria played an important role in shaping the soil protist community structure, which can be derived from feeding preferences of protists on microbial prey, and their intimate relationships in soil functioning or environmental adaptation. Our findings advance our knowledge about the impacts of different trophic groups on key soil organismic communities, with implications for ecosystem functions and services.


Assuntos
Ecossistema , Solo , Eucariotos , Bactérias/genética , Cadeia Alimentar , Fungos/genética , Microbiologia do Solo
16.
Environ Microbiol ; 25(2): 505-514, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36478095

RESUMO

Soil bacteria are diverse and form complicated ecological networks through various microbial interactions, which play important roles in soil multi-functionality. However, the seasonal effects on the bacterial network, especially the relationship between bacterial network topological features and soil resistomes remains underexplored, which impedes our ability to unveil the mechanisms of the temporal-dynamics of antibiotic resistance genes (ARGs). Here, a field investigation was conducted across four seasons at the watershed scale. We observed significant seasonal variation in bacterial networks, with lower complexity and stability in autumn, and a wider bacterial community niche in summer. Similar to bacterial communities, the co-occurrence networks among ARGs also shift with seasonal change, particularly with respect to the topological features of the node degree, which on average was higher in summer than in the other seasons. Furthermore, the nodes with higher betweenness, stress, degree, and closeness centrality in the bacterial network showed strong relationships with the 10 major classes of ARGs. These findings highlighted the changes in the topological properties of bacterial networks that could further alter antibiotic resistance in soil. Together, our results reveal the temporal dynamics of bacterial ecological networks at the watershed scale, and provide new insights into antibiotic resistance management under environmental changes.


Assuntos
Genes Bacterianos , Solo , Microbiologia do Solo , Bactérias/genética , Resistência Microbiana a Medicamentos/genética , Antibacterianos/farmacologia
17.
mLife ; 2(1): 2-10, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38818334

RESUMO

The microbiome contributes to multiple ecosystem functions and services through its interactions with a complex environment and other organisms. To date, however, most microbiome studies have been carried out on individual hosts or particular environmental compartments. This greatly limits a comprehensive understanding of the processes and functions performed by the microbiome and its dynamics at an ecosystem level. We propose that the theory and tools of ecosystem ecology be used to investigate the connectivity of microorganisms and their interactions with the biotic and abiotic environment within entire ecosystems and to examine their contributions to ecosystem services. Impacts of natural and anthropogenic stressors on ecosystems will likely cause cascading effects on the microbiome and lead to unpredictable outcomes, such as outbreaks of emerging infectious diseases or changes in mutualistic interactions. Despite enormous advances in microbial ecology, we are yet to study microbiomes of ecosystems as a whole. Doing so would establish a new framework for microbiome study: Ecosystem Microbiome Science. The advent and application of molecular and genomic technologies, together with data science and modeling, will accelerate progress in this field.

18.
Microbiome ; 10(1): 219, 2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36503688

RESUMO

BACKGROUND: Little is known about the global distribution and environmental drivers of key microbial functional traits such as antibiotic resistance genes (ARGs). Soils are one of Earth's largest reservoirs of ARGs, which are integral for soil microbial competition, and have potential implications for plant and human health. Yet, their diversity and global patterns remain poorly described. Here, we analyzed 285 ARGs in soils from 1012 sites across all continents and created the first global atlas with the distributions of topsoil ARGs. RESULTS: We show that ARGs peaked in high latitude cold and boreal forests. Climatic seasonality and mobile genetic elements, associated with the transmission of antibiotic resistance, were also key drivers of their global distribution. Dominant ARGs were mainly related to multidrug resistance genes and efflux pump machineries. We further pinpointed the global hotspots of the diversity and proportions of soil ARGs. CONCLUSIONS: Together, our work provides the foundation for a better understanding of the ecology and global distribution of the environmental soil antibiotic resistome. Video Abstract.


Assuntos
Antibacterianos , Solo , Humanos , Antibacterianos/farmacologia , Ecologia , Fenótipo
19.
Environ Microbiol ; 24(11): 5574-5582, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36070190

RESUMO

Despite the importance of soil bacterial and fungal communities for ecosystem services and human welfare, how their ecological networks respond to climatic aridity have yet been evaluated. Here, we collected soil samples from 47 sites across 2500 km in coastal and inland areas of eastern Australia with contrasting status of aridity. We found that the diversity of both bacteria and fungi significantly differed between inland and coastal soils. Despite the significant differences in soil nutrient availability and stoichiometry between the inland and coastal regions, aridity was the most important predictor of bacterial and fungal community compositions. Aridity has altered the potential microbial migration rates and further impacted the microbial assembly processes by increasing the importance of stochasticity in bacterial and fungal communities. More importantly, ecological network analysis indicated that aridity enhanced the complexity and stability of the bacterial network but reduced that of the fungal network, possibly due to the contrasting impacts of aridity on the community-level habitat niche breadth and overlaps. Our work paves the way towards a more comprehensive understanding of how climate changes will alter soil microbial communities, which is integral to predicting their long-term consequences for ecosystem sustainability and resilience to future disturbances.


Assuntos
Microbiota , Solo , Humanos , Microbiologia do Solo , Ecossistema , Fungos/genética , Bactérias/genética
20.
Sci Total Environ ; 849: 157820, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-35932868

RESUMO

Plastic debris, as a novel substrate, provides an avenue for enriching microbial growth. Although the structure of the aquatic plastisphere microbial community is well-characterised, linkages between microbial community assembly and species co-existence in the soil plastisphere vary and remain poorly understood, particularly when soil fauna is involved. This study investigated the soil plastisphere community, including bacteria, fungi, and protists, focusing on microbial succession and community assembly processes impacted by soil mesofauna. Certain soil plastisphere microbial taxa thrived at particular time points (e.g. Actinobacteria at 60 d), indicating the irreplaceable role of microplastic selection for time-sensitive taxa. Additionally, the biodiversity of keystone ecological clusters in the soil plastisphere was significantly associated with incubation time. Furthermore, the slopes of bacterial and fungal time-decay curves in soil plastisphere were steeper when treated with soil mesofauna than without soil mesofauna, whereas protist time-decay curves (total and abundant taxa) exhibited the opposite trend. Soil mesofauna increased the relative importance of determinacy in the soil plastisphere bacterial assembly process, while enhancing the stochasticity of fungal and protistan community assemblages. The study demonstrates the complex assembly patterns of soil plastisphere microbial communities, emphasising the importance of interactions between the plastisphere and local soil fauna from an ecological perspective.


Assuntos
Plásticos , Solo , Bactérias , Biodiversidade , Microplásticos , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA