Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
AMB Express ; 7(1): 198, 2017 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-29116481

RESUMO

Soil amended with single biochar or nitrogen (N) fertilizer has frequently been reported to alter soil nitrification process due to its impact on soil properties. However, little is known about the dynamic response of nitrification and ammonia-oxidizers to the combined application of biochar and N fertilizer in intensive vegetable soil. In this study, an incubation experiment was designed to evaluate the effects of biochar and N fertilizer application on soil nitrification, abundance and community shifts of ammonia-oxidizing bacteria (AOB) and ammonia oxidizing archaea (AOA) in Hangzhou greenhouse vegetable soil. Results showed that single application of biochar had no significant effect on soil net nitrification rates and ammonia-oxidizers. Conversely, the application of only N fertilizer and N fertilizer + biochar significantly increased net nitrification rate and the abundance of AOB rather than AOA, and only AOB abundance was significantly correlated with soil net nitrification rate. Moreover, the combined application of N fertilizer and biochar had greater effect on AOB communities than that of the only N fertilizers, and the relative abundance of 156 bp T-RF (Nitrosospira cluster 3c) decreased but 60 bp T-RF (Nitrosospira cluster 3a and cluster 0) increased to become a single predominant group. Phylogenetic analysis indicated that all the AOB sequences were grouped into Nitrosospira cluster, and most of AOA sequences were clustered within group 1.1b. We concluded that soil nitrification was stimulated by the combined application of N fertilizer and biochar via enhancing the abundance and shifting the community composition of AOB rather than AOA in intensive vegetable soil.

4.
J Sci Food Agric ; 94(5): 1020-5, 2014 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-24038064

RESUMO

BACKGROUND: Quality-associated problems, such as excessive in planta accumulation of oxalate, often arise in soillessly cultivated spinach (Spinacia oleracea). Maintaining a higher level of ammonium (NH4⁺) compared to nitrate (NO3⁻) during the growth period can effectively decrease the oxalate content in hydroponically cultivated vegetables. However, long-term exposure to high concentrations of NH4⁺ induces toxicity in plants, and thus decreases the biomass production. Short-term application of NH4⁺ before harvesting in soilless cultivation may provide an alternative strategy to decrease oxalate accumulation in spinach, and minimise the yield reduction caused by NH4⁺ toxicity. RESULT: The plants were pre-cultured in 8 mmol L⁻¹ NO3⁻ nutrient solution. Next, 6 days before harvest, the plants were transferred to a nutrient solution containing 4 mmol L⁻¹ NO3⁻ and 4 mmol L⁻¹ NH4⁺. This new mix clearly reduced oxalate accumulation, increased levels of several antioxidant compounds, and enhanced antioxidant capacity in the edible parts of spinach plants, but it did not affect biomass production. However, when the 8 mmol L⁻¹ NO3⁻ was shifted to either nitrogen-free, 4 mmol L⁻¹ NH4⁺ or 8 mmol L⁻¹ NH4⁺ treatments, although some of the quality indexes were improved, yields were significantly reduced. CONCLUSIONS: Short-term alteration of nitrogen supply prior to harvest significantly affects quality and biomass of spinach plants, and we strongly recommend to simultaneously use NO3⁻ and NH4⁺ in hydroponic cultivation, which improves vegetable quality without decreasing biomass production.


Assuntos
Compostos de Amônio/metabolismo , Fertilizantes , Qualidade dos Alimentos , Hidroponia , Nitratos/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Spinacia oleracea/crescimento & desenvolvimento , Compostos de Amônio/administração & dosagem , Compostos de Amônio/efeitos adversos , Antioxidantes/análise , Antioxidantes/metabolismo , China , Produtos Agrícolas/química , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/metabolismo , Fertilizantes/efeitos adversos , Alimento Funcional/análise , Humanos , Nitratos/administração & dosagem , Nitratos/efeitos adversos , Ciclo do Nitrogênio , Valor Nutritivo , Oxalatos/efeitos adversos , Oxalatos/antagonistas & inibidores , Oxalatos/química , Oxalatos/metabolismo , Folhas de Planta/química , Folhas de Planta/metabolismo , Caules de Planta/química , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/metabolismo , Solubilidade , Spinacia oleracea/química , Spinacia oleracea/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...