Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ying Yong Sheng Tai Xue Bao ; 32(5): 1673-1680, 2021 May.
Artigo em Chinês | MEDLINE | ID: mdl-34042361

RESUMO

Using DC3 high-resolution dendrometer and Granier-type thermal dissipation probes, we measured stem diameter micro-variations and xylem sap flow of two typical forestation species, Quercus liaotungensis and Robinia pseudoacacia, for a growing season in the loess hilly region of China. The main environmental factors (soil water content, solar radiation, air temperature and relative humidity) were monitored. The linkage between diameter micro-variations and transpiration water use were analyzed with respect to their responses to environmental factors. The results showed that the variations in stem diameter and sap flux density of both species had obvious diurnal rhythms. The maximum daily shrinkage was positively correlated with daily sap flux density. The micro-variation of stem diameter at the daily scale was affected by transpiration during the day. The maximum daily shrinkage of stem diameter was positively correlated and well fitted with transpiration driving factors (solar radiation, vapor pressure deficit, and the integrated variable VT). The difference in slopes of regression curves suggested that the daily variation of stem diameter in Q. liaotungensis was greater and more sensitive to meteorological factors than that in R. pseudoacacia. The sap flux densities of both tree species were higher during the period with relatively higher soil water content than that with lower soil water content. The difference of maximum daily diameter shrinkage between different soil water conditions was statistically significant in Q. liaotungensis, but not in R. pseudoacacia. These differences may be related to water use strategies, including transpiration regulation and stem water replenishment.


Assuntos
Transpiração Vegetal , Robinia , China , Estações do Ano , Solo , Árvores , Água/análise
2.
Huan Jing Ke Xue ; 41(12): 5509-5517, 2020 Dec 08.
Artigo em Chinês | MEDLINE | ID: mdl-33374067

RESUMO

There were significant differences in the working efficiency and mechanism of constructed wetlands between low temperature and suitable temperature conditions. This study designed a horizontal subsurface flow constructed wetland (HFCW) and a vertical subsurface flow constructed wetland (VFCW) to explore their performance differences in advanced treatment of sewage based on contaminant degradation analysis including the removal of organic matters, total nitrogen (TN), and total phosphorus (TP), as well as the analysis of microbial community structure. The results showed that when the COD concentration of influent was between 37.50 to 80.00 mg·L-1, the concentration of total nitrogen and total phosphorus were within the first level A criteria specified in the discharge standard of pollutants for municipal wastewater treatment plant at the continuous flow of 2 m3·d-1:①Both HFCW and VFCW showed stable degradation ability of organic matter in influent and good resistance to high organic load. ②Supplementation of the carbon source significantly improved the nitrogen removal efficiency of two subsurface flow constructed wetlands. HFCW achieved the average removal rate of TN at 76.01%, and the average removal rate of TN by VFCW reached 71.69% after the carbon addition. In contrast, dosage of an external carbon source showed limited effect on phosphorus removal. Furthermore, it worked more effectively for performance improvement of HFCW than that of VFCW. ③The analysis of microbial community structure in wetland substrate and plant rhizosphere samples revealed that Proteobacteria, Firmicutes, and Verrucomicrobia were the dominant phylum in two series of wetland samples. For the dominant microbiota at the genus level, there were more significant differences in microbial community structure in wetland substrate samples than that in plant rhizosphere samples. Hydrogenophaga, Erysipelothrix, and Devosia contributed the most to the differences between the microbial communities of HFCW and VFCW. Overall, the species diversity and abundance of microbial samples from VFCW was higher than those from HFCW.

3.
Huan Jing Ke Xue ; 40(3): 1287-1294, 2019 Mar 08.
Artigo em Chinês | MEDLINE | ID: mdl-31087976

RESUMO

It is of great significance to analyze the runoff pollution load characteristics of different roof materials to improve the estimation accuracy of urban non-point source pollution loads. Yangzhou City was selected as the study area. There, three types of roofs were chosen for rainfall-runoff monitoring, including a Chinese style tile roof, cement tile roof, and concrete flat roof. The pollutant concentrations, scour law, and first flush effect of the three types of roofs were compared. The results show that the event mean concentration (EMC) of total nitrogen (TN), total phosphorus (TP), permanganate index, and total suspended solids (TSS) in the runoff of Chinese style tile roofs are around 4-9 times that in the runoff of cement tile roofs. The rainfall intensity exhibits stronger effect on the change in pollutant concentrations of runoff from the Chinese style tile roof than that from the cement tile roof. The Pearson correlation coefficients (r) of rainfall intensity against TP and TSS in time series were 0.853 and 0.822, respectively. The first flush intensities of the three types of roof materials were in the order cement tile roof > concrete flat roof > Chinese style tile roof. It was found that 60.0% of the roof runoff pollution load could be reduced by intercepting 31.5%, 58.0%, and 60.4% of the initial runoff for the Chinese style tile roof, the cement tile roof, and the concrete flat roof, respectively. The actual emissions of TN, TP, and TSS, and the permanganate index in rainstorm events would be significantly underestimated when roof materials are not distinguished. This would have negative effects on the pollution control of urban non-point sources. It is demonstrated that the fine distinction of roof materials is able to improve the estimation accuracy of urban non-point source loads.

4.
Ying Yong Sheng Tai Xue Bao ; 28(6): 1993-2002, 2017 Jun 18.
Artigo em Chinês | MEDLINE | ID: mdl-29745164

RESUMO

Improving the stability of integrity of biotic index (IBI; i.e., multi-metric indices, MMI) across temporal and spatial scales is one of the most important issues in water ecosystem integrity bioassessment and water environment management. Using datasets of field-based macroinvertebrate and physicochemical variables and GIS-based natural predictors (e.g., geomorphology and climate) and land use variables collected at 227 river sites from 2004 to 2011 across the Zhejiang Province, China, we used random forests (RF) to adjust the effects of natural variations at temporal and spatial scales on macroinvertebrate metrics. We then developed natural variations adjusted (predictive) and unadjusted (null) MMIs and compared performance between them. The core me-trics selected for predictive and null MMIs were different from each other, and natural variations within core metrics in predictive MMI explained by RF models ranged between 11.4% and 61.2%. The predictive MMI was more precise and accurate, but less responsive and sensitive than null MMI. The multivariate nearest-neighbor test determined that 9 test sites and 1 most degraded site were flagged outside of the environmental space of the reference site network. We found that combination of predictive MMI developed by using predictive model and the nearest-neighbor test performed best and decreased risks of inferring type I (designating a water body as being in poor biological condition, when it was actually in good condition) and type II (designating a water body as being in good biological condition, when it was actually in poor condition) errors. Our results provided an effective method to improve the stability and performance of integrity of biotic index.


Assuntos
Ecossistema , Monitoramento Ambiental , Rios , Animais , China , Clima , Invertebrados
5.
Huan Jing Ke Xue ; 37(2): 734-9, 2016 Feb 15.
Artigo em Chinês | MEDLINE | ID: mdl-27363167

RESUMO

Owing to the strong ability to immobilize and hyperaccumulate some toxic heavy metals in contaminated soils, the biochar, lime and such as hyperaccumulator ramie received increasing interests from crops and environment safety in recent years. Outdoor pot experiment was conducted to compare the impacts of lime and biochar addition in paddy rice treatment, hyperaccumulator ramie and ramie combined with EDTA of plant Phytoremediation methods on soil available Cd dynamics in rainfall runoff and the mobility along soil profile, under both natural acid precipitation and acid soil conditions. The results showed that, biochar addition at a 2% mass ratio application amount significantly increased soil pH, while ramie with EDTA application obviously decreased soil pH compared to ramie monoculture. Within the same rainfall events, water soluble Cd concentration in surface runoff of ramie treatments was significantly higher than those of waterlogged rice treatments, and Cd concentration in runoff was obviously increased after EDTA addition, whereas lime at a 0.3% mass ratio application amount as additive had no obvious impact on soil pH and Cd speciation change, which may be due to the low application amount. During the whole experimental period , water soluble Cd concentration of rainfall runoff in spring was higher than that in summer, showing the same seasonal characteristics in all treatments. Biochar addition could significantly decrease available Cd content in 0-20 cm soil layer and with certain preferable persistency effects, whereas EDTA addition treatment obviously increased available Cd of 0-20 cm soil layer compared to other treatments, and obvious Cd element activation phenomenon in 20-40 cm soil layer was observed after EDTA addition. In conclusion, lime and biochar as environmental and friendly alkaline Cd immobilization materials showed lower environment risk to surface and ground receiving water, but attention should be paid to phytoremediation enhanced with EDTA or other organic acid before promotion and field application for heavy metals removal from contaminated soils.


Assuntos
Agricultura , Cádmio/análise , Poluentes do Solo/análise , Solo/química , Biodegradação Ambiental , Compostos de Cálcio , Carvão Vegetal , Recuperação e Remediação Ambiental , Água Subterrânea , Oryza , Óxidos
6.
Huan Jing Ke Xue ; 34(9): 3557-61, 2013 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-24289005

RESUMO

Non-point source loads of heavy metals from contaminated soil has increasingly become the major cause of heavy metal concentrations of rivers and lakes surpassed the limitation value, while only few studies had focused on quantitative monitoring of soil heavy metal transportation to water, in situ field conditions. As reported, agricultural farmland heavy metal contamination was the major contamination problem, especially for cadmium (Cd) pollution in middle and downstream of Xiangjiang River. This study selected the typical Cd polluted agricultural watershed for a case study, three typical landuse types of rice, dry farmland and unused grassland with three replicate quadrates were carried out for natural rainfall runoff hydrology processes monitoring, from 2011-2012. Results showed that, precipitation pH value increased from spring to summer, soluble Cd concentration of spring runoff was significantly higher than that of summer rainfall runoff, which presented an obviously seasonal heterogeneity and had a negative correlation with rainfall pH value, and rainfall pH value can obviously impact soil soluble Cd transportation into surface runoff charge. In the same rainfall event, soluble Cd concentration and non-point load of rice were significantly lower than those of dry land and unused grassland, while no obviously seasonal trend was found for non-point load of Cd from three typical landuse types because of the rainfall depth variance, which needs more researches and concerns in the future. These results can provide valuable data and scientific supports for watershed scale's heavy metal non-point source load quantitative estimation and water environment management and water quality diagnosis and early warning.


Assuntos
Cádmio/análise , Monitoramento Ambiental , Poluentes do Solo/análise , Agricultura , China , Pradaria , Mineração , Oryza , Rios , Estações do Ano , Solo/química , Movimentos da Água
7.
Huan Jing Ke Xue ; 30(6): 1844-9, 2009 Jun 15.
Artigo em Chinês | MEDLINE | ID: mdl-19662878

RESUMO

Natural Soil was used as catalyst to degrade Sulforhodamine B (SRB) and 2,4-Dichlorophenol(DCP) under visible irradiation (vis, lambda > 420 nm). The influences of [Soil] and [H2O2]0 on degradation were analysed, and the reaction kinetics and mechanism of degradation were studied by UV-Vis, fluorescence spectra and IR. Results indicated, SRB can be degraded availably by chosen Soil/H2O2/vis system. Depigmentation can complete in 240 min,COD was removed by 90.44% in 10 h,and DCP was removed by 80.55% in 240 min. Fluorescence spectra results show that highly active oxide species *OH was produced in the reaction. IR results indicate SRB was degraded to small molecular, such as amine substances and carbonyl compounds. Catalyst activity did not exhibit any significant loss after used 5 recycles. Degradation mechanism is heterogeneous Fenton-like process related with *OH.


Assuntos
Clorofenóis/química , Rodaminas/química , Poluentes do Solo/química , Solo , Luz Solar , Catálise , Recuperação e Remediação Ambiental/métodos , Peróxido de Hidrogênio/química , Compostos Orgânicos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...