Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 951: 175451, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39134277

RESUMO

Long-term trend forecast of chlorophyll-a concentration (Chla) holds significant implications for eutrophication management and pollution control planning on lakes, especially under the background of climate change. However, it is a challenging task due to the mixture of trend, seasonal and residual components in time series and the nonlinear relationships between Chla and the hydro-environmental factors. Here we developed a hybrid approach for long-term trend forecast of Chla in lakes, taking the Lake Taihu as an instantiation case, by the integration of Seasonal and Trend decomposition using Loess (STL), wavelet coherence, and Convolutional Neural Network with Bidirectional Long Short-Term Memory (CNN-BiLSTM). The results showed that long-term trends of Chla and the hydro-environmental factors could be effectively separated from the seasonal and residual terms by STL method, thereby enhancing the characterization of long-term variation. The resonance pattern and time lag between Chla and the hydro-environmental factors in the time-frequency domain were accurately identified by wavelet coherence. Chla responded quickly to variations in TP, but showed a time lag response to variations in WT in Lake Taihu. The forecasting method using multivariate and CNN-BiLSTM largely outperformed the other methods for Lake Taihu with regards to R2, RMSE, IOA and peak capture capability, owning to the combination of CNN for extracting local features and the integration of bidirectional propagation mechanism for the acquisition of higher-level features. The proposed hybrid deep learning approach offers an effective solution for the long-term trend forecast of algal blooms in eutrophic lakes and is capable of addressing the complex attributes of hydro-environmental data.

2.
Water Res ; 258: 121779, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38772321

RESUMO

Aquatic biodiversity plays a significant role in maintaining the ecological balance and the overall health of riverine ecosystems. Elevation is an important factor influencing biodiversity patterns. However, it is still unclear through which pathway elevation influences riverine biodiversity at different trophic levels. In this study, the elevation-associated pathways affecting aquatic biodiversity at different trophic levels were explored using structural equation modeling (SEM) and taking the Bayin River, China as the case. The results showed that the elevational patterns were different among aquatic organisms at different trophic levels. For macroinvertebrates and bacteria, the pattern was hump-shaped; while for phytoplankton and zooplankton, it was U-shaped. Building upon these observed elevational patterns, our investigation delved into the direct and indirect pathways through which elevation influences aquatic biodiversity. We found that elevation exerts an impact on aquatic biodiversity via indirect pathways. For all aquatic organisms investigated, the major pathway through which elevation influences biodiversity is mediated by water temperature and water quality. For aquatic organisms at higher trophic levels, like macroinvertebrates and zooplankton, the crucial pathway is also mediated by the landscape. The results of this study contributed to understanding the effects of elevation on aquatic organisms at different trophic levels and provided an important basis for the assessment of riverine biodiversity at large scales.


Assuntos
Biodiversidade , Rios , Zooplâncton , Animais , China , Fitoplâncton , Altitude , Organismos Aquáticos , Invertebrados
3.
Water Res ; 256: 121642, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38657307

RESUMO

Both cyanobacterial blooms and antibiotic resistance have aggravated worldwide and posed a great threat to public health in recent years. As a significant source and reservoir of water environmental resistome, cyanobacteria exhibit confusing discrepancy between their reduced susceptibility and their chronic exposure to antibiotic mixtures at sub-inhibitory concentrations. How the increasing temperature affects the adaptive evolution of cyanobacteria-associated antibiotic resistance in response to low-level antibiotic combinations under climate change remains unclear. Here we profiled the antibiotic interaction and collateral susceptibility networks among 33 commonly detected antibiotics in 600 cyanobacterial strains isolated from 50 sites across four eutrophicated lakes in China. Cyanobacteria-associated antibiotic resistance level was found positively correlated to antibiotic heterogeneity across all sites. Among 528 antibiotic combinations, antagonism was observed for 62 % interactions and highly conserved within cyanobacterial species. Collateral resistance was detected in 78.5 % of pairwise antibiotic interaction, leading to a widened or shifted upwards mutant selection window for increased opportunity of acquiring second-step mutations. We quantified the interactive promoting effect of collateral resistance and increasing temperature on the evolution of both phenotypic and genotypic cyanobacteria-associated resistance under chronic exposure to environmental level of antibiotic combinations. With temperature increasing from 16 °C to 36 °C, the evolvability index and genotypic resistance level increased by 1.25 - 2.5 folds and 3 - 295 folds in the collateral-resistance-informed lineages, respectively. Emergence of resistance mutation pioneered by tolerance, which was jointly driven by mutation rate and persister fraction, was found to be accelerated by increased temperature and antibiotic switching rate. Our findings provided mechanic insights into the boosting effect of climate warming on the emergence and development of cyanobacteria-associated resistance against collateral antibiotic phenotypes.


Assuntos
Antibacterianos , Mudança Climática , Cianobactérias , Cianobactérias/genética , Cianobactérias/efeitos dos fármacos , Antibacterianos/farmacologia , Lagos/microbiologia , Resistência Microbiana a Medicamentos/genética , China , Farmacorresistência Bacteriana/genética , Temperatura
4.
J Environ Manage ; 356: 120502, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38479281

RESUMO

Effective removal of phosphorus from water is crucial for controlling eutrophication. Meanwhile, the post-disposal of wetland plants is also an urgent problem that needs to be solved. In this study, seedpods of the common wetland plant lotus were used as a new raw material to prepare biochar, which were further modified by loading nano La(OH)3 particles (LBC-La). The adsorption performance of the modified biochar for phosphate was evaluated through batch adsorption and column adsorption experiments. Adsorption performance of lotus seedpod biochar was significantly improved by La(OH)3 modification, with adsorption equilibrium time shortened from 24 to 4 h and a theoretical maximum adsorption capacity increased from 19.43 to 52.23 mg/g. Moreover, LBC-La maintained a removal rate above 99% for phosphate solutions with concentrations below 20 mg/L. The LBC-La exhibited strong anti-interference ability in pH (3-9) and coexisting ion experiments, with the removal ratio remaining above 99%. The characterization analysis indicated that the main mechanism is the formation of monodentate or bidentate lanthanum phosphate complexes through inner sphere complexation. Electrostatic adsorption and ligand exchange are also the mechanisms of LBC-La adsorption of phosphate. In the dynamic adsorption experiment of simulated wastewater treatment plant effluent, the breakthrough point of the adsorption column was 1620 min, reaching exhaustion point at 6480 min, with a theoretical phosphorus saturation adsorption capacity of 6050 mg/kg. The process was well described by the Thomas and Yoon-Nelson models, which indicated that this is a surface adsorption process, without the internal participation of the adsorbent.


Assuntos
Lotus , Poluentes Químicos da Água , Fósforo , Águas Residuárias , Fosfatos/química , Carvão Vegetal , Adsorção , Lantânio/química , Poluentes Químicos da Água/química , Sementes , Cinética
5.
Sci Bull (Beijing) ; 69(5): 661-670, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38245450

RESUMO

River damming is believed to largely intercept nutrients, particularly retain more phosphorus (P) than nitrogen (N), and thus harm primary productivity, fishery catches, and food security downstream, which seriously constrain global hydropower development and poverty relief in undeveloped regions and can drive geo-political disputes between nations along trans-boundary rivers. In this study, we investigated whether reservoirs can instead improve nutrient regimes downstream. We measured different species of N and P as well as microbial functions in water and sediment of cascade reservoirs in the upper Mekong River over 5 years and modelled the influx and outflux of N and P species in each reservoir. Despite partially retaining total N and total P, reservoirs increased the downstream flux of ammonium and soluble reactive phosphorus (SRP). The increase in ammonium and SRP between outflux and influx showed positive linear relationships with the hydraulic residence time of the cascade reservoirs; and the ratio of SRP to dissolved inorganic nitrogen increased along the reservoir cascade. The lentic environment of reservoirs stimulated algae-mediated conversion of nitrate into ammonium in surface water; the hypoxic condition and the priming effect of algae-induced organic matter enhanced release of ammonium from sediment; the synergy of microbial phosphorylation, reductive condition and sediment geochemical properties increased release of SRP. This study is the first to provide solid evidence that hydropower reservoirs improve downstream nutrient bioavailability and N-P balance through a process of retention-transformation-transport, which may benefit primary productivity. These findings could advance our understanding of the eco-environmental impacts of river damming.

6.
Ecotoxicology ; 33(1): 85-93, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38193982

RESUMO

The extensive utilization of Zinc Oxide nanoparticles (ZnO NPs) has garnered significant attention due to their detrimental impacts on ecosystem. Unfortunately, ecotoxicity of ZnO NPs in coastal waters with fluctuating salinity has been disregarded. This study mainly discussed the toxic effects of ZnO NPs on species inhabiting the transition zones between freshwater and brackish water, who are of great ecological and economic importance among fish. To serve as the model organism, Takifugu obscurus, a juvenile euryhaline fish, was exposed to different ZnO NPs concentrations (0-200 mg/L) and salinity levels (0 and 15 ppt). The results showed that a moderate increase in salinity (15 ppt) could alleviate the toxic effect of ZnO NPs, as evidenced by improved survival rates. The integrated biomarker response index on oxidative stress also revealed that the toxicity of ZnO NPs was higher in freshwater compared to brackish water. These outcomes can be attributed to higher salinity (15 ppt) reducing the bioavailability of ZnO NPs by facilitating their aggregation and inhibiting the release of metal ions. It is noteworthy that elevated salinity was found to alleviate ZnO NPs toxicity by means of osmotic adjustment via the activation of Na+/K+-ATPase activity. This study demonstrates the salinity-dependent effect of ZnO NPs on T. obscurus, suggesting the possibility for euryhaline fish like T. obscurus to adapt their habitat towards more saline environments, under constant exposure to ZnO NPs.


Assuntos
Nanopartículas , Óxido de Zinco , Animais , Antioxidantes , Ecossistema , Peixes , Nanopartículas/toxicidade , Salinidade , Takifugu/fisiologia , Óxido de Zinco/toxicidade
7.
J Environ Manage ; 351: 119520, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38043311

RESUMO

The interaction between water environment and social economy at a basin scale is complex and challenging to quantify. To address this issue, this study proposes an integrated framework that builds parametric connections among water, contaminants, administrative regions, and social activities. The framework, known as the water environmental carrying capacity (WECC) optimization framework, effectively captures the intricacy of the interaction and integrates socio-economic parameter structure relationships, a water environmental model, a WECC optimization model, and a sensitivity analysis of regulatory parameters. Applied to the Anhui-Huaihe Basin in mid-eastern China, the framework considers nine administrative regions and three economic factors: industry, agriculture, and GDP per capita (pGDP). Results show that the current water environmental carrying capacity of the watershed is insufficient to meet socio-economic development requirements. After optimization, the WECC for industry, agriculture, and pGDP in the region increased by 22.40%, 26.59%, and 15.08% respectively. Overall COD and NH4-N discharge decreased by 13.6% and 14.7% respectively, effectively reducing pollution loads in rivers and enhancing sustainable development potential. At the regional scale, optimization for industry, agriculture, and pGDP exhibited different characteristics, but all aimed to improve efficiency by reducing the K value (pollution discharge/output value ratio). Regions with industrial treatment rates (αwt) below 0.8 should prioritize increasing treatment rates, while those above 0.8 should consider industrial upgrading for enhanced efficiency. For agriculture, important sensitive parameters for farming and livestock breeding are the proportion of high standard farmland (αs) and the scale breeding ratio (αb), which should be increased to above 0.15 and 0.83 respectively for all regions to achieve agricultural optimization. For pGDP optimization, the focus is on improving living environments and reducing pollution discharge, with crucial measures including collecting and treating rural domestic sewage, where the rural toilet improvement rate (αt) in each region should be increased to 0.78 or above. The results emphasize the need for both interregional allocation and intraregional planning to achieve comprehensive basin optimization and a harmonious balance between regional development and water environment.


Assuntos
Conservação dos Recursos Naturais , Água , Poluição Ambiental , Rios/química , Agricultura , China
8.
J Environ Manage ; 341: 118027, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37141723

RESUMO

Exploring the response between benthic community changes and environmental variables has significance for restoring the health of river ecosystems. However, little is known of the impact on communities of interactions between multiple environmental factors, and frequent changes in the flow of mountain rivers are different from those in the flow of plain river networks, which also impact differently the benthic community. Thus, there is a need for research on the response of benthic communities to environmental changes in mountain rivers under flow regulation. In this study, we collected samples from the Jiangshan River in the dry season (November 2021) and the wet season (July 2022) to investigate the aquatic ecology and benthic macroinvertebrate communities in the watershed. Multi-dimension analyses were used to analyze the spatial variation in the community structure and response of benthic macroinvertebrates to multiple environmental factors. In addition, the explanatory power of the interaction between multiple factors on the spatial variation of communities, and the distribution characteristics of benthic community and their causes were investigated. The results showed that herbivores are the most abundant forms in the benthic community of mountain rivers. The structure of benthic community in Jiangshan River was significantly affected by water quality and substrate, whereas the overall community structure was affected by river flow conditions. Furthermore, nitrite nitrogen and ammonium nitrogen were the key environmental factors impacting the spatial heterogeneity of communities during the dry and wet season, respectively. Meanwhile, the interaction between these environmental factors showed a synergistic effect, enhancing the influence of these environmental factors on community structure. Thus, controlling urban and agricultural pollution and releasing ecological flow would be effective strategies to improve benthic biodiversity. Our study showed that using the interaction of environmental factors was a suitable way to evaluate the association between environmental variables and variation in benthic macroinvertebrate community structure in river ecosystems.


Assuntos
Invertebrados , Rios , Animais , Invertebrados/fisiologia , Rios/química , Ecossistema , Monitoramento Ambiental , Qualidade da Água , Biodiversidade
9.
Artigo em Inglês | MEDLINE | ID: mdl-36833904

RESUMO

ZnO nanoparticles (ZnO NPs) have been applied in a wide range of fields due to their unique properties. However, their ecotoxicological threats are reorganized after being discharged. Their toxic effect on anadromous fish could be complicated due to the salinity fluctuations during migration between freshwater and brackish water. In this study, the combined impact of ZnO NPs and salinity on the early development of a typical anadromous fish, obscure puffer (Takifugu obscurus), was evaluated by (i) observation of the nanoparticle characterization in salt solution; (ii) quantification of the toxicity to embryos, newly hatched larvae, and larvae; and (iii) toxicological analysis using biomarkers. It is indicated that with increased salinity level in brackish water (10 ppt), the toxicity of ZnO NPs decreased due to reduced dissolved Zn2+ content, leading to higher hatch rate of embryos and survival rate of larvae than in freshwater (0 ppt). The irregular antioxidant enzyme activity changes are attributed to the toxic effects of nanoparticles on CAT (catalase), but further determination is required. The results of present study have the significance to guide the wildlife conservation of Takifugu obscurus population.


Assuntos
Nanopartículas , Óxido de Zinco , Animais , Takifugu , Salinidade , Antioxidantes , Peixes , Larva
10.
Water Res ; 228(Pt A): 119358, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36402058

RESUMO

Antibiotic stewardship is hindered by a lack of consideration for complicated environmental fate of antibiotics and their role in resistance development, while the current methodology of eco-toxicological risk assessment has not been fully protective against their potential to select for antibiotic resistance. To address this problem, we established a novel methodologic framework to perform comprehensive environmental risk assessment of antibiotics in terms of resistance development, which was based on selection effect, phenotype resistance level, heteroresistance frequency, as well as prevalence and stability of antibiotic resistance genes. We tracked the contribution of antibiotic load reduction to the mitigation of environmental risk of resistance development by fate and transport modeling. The method was instantiated in a lake-river network-basin complex system, taking the Taihu Basin as a case study. Overall, antibiotic load posed no eco-toxicological risk but an average medium-level environmental risk for resistance development in Taihu Lake. The effect of antibiotic load on resistance risk was both seasonal-dependent and category-dependent, while quinolones posed the greatest environmental risk for resistance development. Mass-flow analysis indicated that temporal-spatial variation in hydrological regime and antibiotic fate together exerted a significant effect on antibiotic load in the system. By apportioning antibiotic load to riverine influx, we identified the hotspots for load reduction and predicted the beneficial response of resistance risk under load-reduction scenarios. Our study proposed a risk-oriented strategy of basin-scaled antibiotic load reduction for environmental risk control of resistance development.


Assuntos
Gestão de Antimicrobianos , Lagos , Rios , Hidrologia , Antibacterianos
11.
Biology (Basel) ; 11(12)2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36552338

RESUMO

Field investigation indicated that the reduction in fish spawning was associated with the alteration in water temperatures, even a 2-3 °C monthly difference due to reservoir operations. However, the physiological mechanism that influences the development of fish ovary (DFO) remains unclear. Thus, experiments of Coreius guichenoti were conducted at three different temperatures, optimal temperature (~20 °C, N) for fish spawning, lower (~17 °C, L), and higher (~23 °C, H), to reveal the effects of altered water temperature on the DFO. Comparisons were made between the L and N (LvsN) conditions and H and N (HvsN) conditions. Transcriptomic analysis differentially expressed transcripts (DETs) related to heat stress were observed only in LvsN conditions, indicating that the DFO showed a stronger response to changes in LvsN than in HvsN conditions. Upregulation of DETs of vitellogenin receptors in N temperature showed that normal temperature was conducive to vitellogenin entry into the oocytes. Other temperature-sensitive DETs, including microtubule, kinesin, dynein, and actin, were closely associated with cell division and material transport. LvsN significantly impacted cell division and nutrient accumulation in the yolk, whereas HvsN only influenced cell division. Our results highlight the impact of altered water temperature on the DFO, thereby providing insights for future reservoir operations regarding river damming and climate change and establishing fish conservation measures.

12.
Front Microbiol ; 13: 971437, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36212880

RESUMO

Floodplains play essential roles in the ecological functions of regional environments. The merging and coalescence of bacterial communities in aquatic environments results in periodic patterns driven by regular hydrological activities, which may, in turn, influence ecological activities. However, the degree of bacterial community coalescence in the lateral and vertical directions as well as the underlying hydrological mechanism of floodplain ecosystems is poorly understood. Therefore, we investigated the spatiotemporal patterns and coalescence processes of planktonic and sedimentary bacterial communities during normal and high-water periods in a floodplain ecosystem of the Yellow River source region. We classified bacterial operational taxonomic units (OTUs) based on 16S rRNA gene sequencing, and quantified community coalescence by calculating the proportions of overlapping OTUs, the contributions of upstream sources to downstream sinks, and positive/negative cohesion. The results revealed major differences in the composition and diversity of planktonic and sedimentary bacterial communities. Bacterial community diversity in the high-water period was higher than in the normal period. Laterally, hydrological connectivity promoted the immigration and coalescence of bacterial communities to oxbow lakes in both the mainstream and tributaries, with the coalescence degree of planktonic bacteria (2.9%) higher than that of sedimentary bacteria (1.7%). Vertically, the coalescence degree of mainstream planktonic and sedimentary bacterial communities was highest, reaching 2.9%. Co-occurrence network analysis revealed that hydrological connectivity increased the complexity of the bacterial network and enhanced the coalescence of keystone species to oxbow lakes. Furthermore, community coalescence improved the competitiveness and dispersal of bacterial communities. This study demonstrated that coalescence of bacterial communities is driven by hydrological connectivity in a floodplain ecosystem. Further studies should investigate the processes of bacterial community coalescence in floodplains in more detail, which could provide new approaches for environmental protection and ecological function preservation.

13.
Geophys Res Lett ; 49(12): 1-10, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35928231

RESUMO

Climate change threatens biodiversity through global alteration of habitats, but efficient conservation responses are often hindered by imprecise downscaling of impacts. Besides thermal effects, warming also drives important ancillary environmental changes, such as when river hydrology evolves in response to climate forcing. Earlier snowmelt runoff and summer flow declines are broadly manifested in snow-dependent regions and relevant to socioeconomically important cold-water fishes. Here, we mechanistically quantify how climate-induced summer flow declines during historical and future periods cause complex local changes in Chinook salmon (Oncorhynchus tshawytscha) habitats for juveniles and spawning adults. Changes consisted of large reductions in useable habitat area and connectivity between the main channel and adjacent off-channel habitats. These reductions decrease the capacity of freshwater habitats to support historical salmon abundances and could pose risks to population persistence in some areas.

14.
J Environ Manage ; 311: 114889, 2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35287073

RESUMO

Cyanobacterial blooms challenge the safe water supply in estuary reservoirs. Yet, data are limited for the variation of phytoplankton dynamics during an algal bloom event at refined scales, which is essential for interpreting the formation and cessation of blooms. The present study investigated the biweekly abundances and dynamics of pico- and nano-phytoplankton in a tropical estuary lake following a prolonged bloom event. Flow cytometry analysis resolved eight phenotypically distinct groups of phytoplankton assigned to nano-eukaryotes (nano-EU), pico/nano-eukaryotes (PicoNano-EU), cryptophyte-like cells (CRPTO), Microcystis-like cells (MIC), pico-eukaryotes (Pico-EU) and three groups of Synechococcus-like cells. Total phytoplankton abundance ranged widely from 2.4 × 104 to 2.8 × 106 cells cm-3. The phytoplankton community was dominated by Synechococcus-like cells with high phycocyanin content (SYN-PC). Temporal dynamics of the phytoplankton community was phytoplankton- and site-specific. Peak values were observed for SYN-PC, SYN-PE2 (Synechococcus-like cells with low levels of phycoerythrin) and Pico-EU, while the temporal dynamics of other groups were less pronounced. Redundancy analysis (RDA) showed the importance of turbidity as an abiotic factor in the formation of the current SYN-PC induced blooms, and Spearman correlation analysis suggested a competitive relationship between SYN-PC and Pico-EU.

15.
Artigo em Inglês | MEDLINE | ID: mdl-35270826

RESUMO

In this paper, two trophic lakes: Lake Taihu and Lake Yanghe, and three alpine lakes: Lake Qinghai, Lake Keluke, and Lake Tuosu, were investigated to discover the connections between environmental factors and the phytoplankton community in lakes with differences in trophic levels and climatic conditions. Three seasonal data, including water quality and phytoplankton, were collected from the five lakes. The results demonstrated clear differences in water parameters and phytoplankton compositions in different lakes. The phytoplankton was dominated by Bacillariophyta, followed by Cyanobacteria and Chlorophyta in Lake Qinghai, Lake Keluke, and Lake Tuosu. It was dominated by Cyanobacteria (followed by Chlorophyta and Bacillariophyta in Lake Yanghe) and Cyanobacteria (followed by Chlorophyta and Cryptophyta in Lake Taihu). The temperature was an essential factor favoring the growth of Cyanobacteria, Chlorophyta, and Bacillariophyta, especially Cyanobacteria and Chlorophyta. The pH had significantly negative relationships with Cyanobacteria, Chlorophyta, and Bacillariophyta. Particularly, a high pH might be a strong and negative factor for phytoplankton growth in alpine lakes. A high salinity was also an adverse factor for phytoplankton. Those results could provide fundamental information about the phytoplankton community and their correlated factors in the alpine lakes of the Tibetan Plateau, contributing to the protection and management of alpine lakes.


Assuntos
Clorófitas , Cianobactérias , Diatomáceas , Lagos/química , Fitoplâncton , Estações do Ano
16.
J Hazard Mater ; 431: 128543, 2022 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-35228078

RESUMO

Endocrine-disrupting compounds (EDCs) enter lakes mainly through river inflow. However, the occurrence, transport and fate of EDCs in the overlying water, suspended particulate matter (SPM) and sediment of inflowing rivers remain unclear. This study investigated the load of seven EDCs in a complex river-lake system of the Taihu Lake Basin during different seasons, with the aims of revealing the transport routes of EDCs and identifying the contributions from different sources. The results indicated that the levels of the seven EDCs in the wet season with high temperature and dilution effects were generally lower than those in the other seasons. EDC enrichment in the sediment was largely affected by the transport and fate of SPM. Moreover, the estrogenic activity and risks of EDCs were the highest in SPM. The mass loadings of particulate EDCs carried by SPM were 2.6 times that of overlying water. SPM plays a vital role in the transport and fate of EDCs in complex river-lake systems and thereby deserves more attention. Nonpoint sources, particularly animal husbandry activities and untreated domestic sewage, were the main sources of EDCs, amounting to 61.5% of the total load.


Assuntos
Disruptores Endócrinos , Poluentes Químicos da Água , Animais , China , Disruptores Endócrinos/análise , Monitoramento Ambiental/métodos , Sedimentos Geológicos , Lagos , Material Particulado/análise , Rios , Água , Poluentes Químicos da Água/análise
17.
Water Res ; 212: 118059, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35124561

RESUMO

Methylmercury (MeHg) can be bioaccumulated through food chains and adversely affect human health. Reservoirs are reported to stimulate MeHg production, however, the characteristics of MeHg dynamics in cascade reservoirs and the associated relations to sedimentation as well as reservoir properties remained unclear. Here we investigated sediment MeHg dynamics in eight cascade reservoirs in the upper Mekong River. We found significant differences in sediment MeHg concentration between the reservoirs, showing an increase with fluctuations along the reservoirs cascade. However, a novel relationship was found between sediment%MeHg (MeHg/Hg) and the ratio of reservoir hydraulic residence time (HRT) to reservoir age. This relationship is formed by the joint effects of the original deposit of Hg and organic carbon (OC) before impoundment and the subsequent sedimentation of Hg and OC after impoundment. The original deposit is continuously transformed as the reservoir ages, whereas the latter is driven by the annual hydrological cycle and HRT, of which the HRT is dominant. This finding cannot be easily revealed in a single reservoir or by comparing multiple reservoirs in different rivers. The discovery is of great significance to understand Hg geochemical cycling in reservoirs, which is quickly increasing in rivers worldwide.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Poluentes Químicos da Água , Monitoramento Ambiental , Sedimentos Geológicos , Humanos , Mercúrio/análise , Rios , Poluentes Químicos da Água/análise
18.
J Environ Sci (China) ; 115: 374-382, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34969465

RESUMO

The livestock breeding industries face overuse of antibiotics, which has been intensively studied in recent years. However, the occurrence and fate of antibiotics as well as their potential threats to the aquatic environments in alpine and arid regions remain unclear. This study investigated the relationship of the occurrence and concentrations of antibiotics between the Kaidu River and Bosten Lake in a typical alpine basin in China. Hot spots with antibiotic pollution source were explored. The antibiotic concentrations in river water and suspended sediment (SPS) were 2.20-99.4 ng/L and 1.03-176 ng/g. The dominant antibiotics were tetracyclines, sulphacetamide, and ofloxacin in river water and sulfonamides, clarithromycin, roxithromycin, and ofloxacin in SPS. The apparent differences in pollution sources and landscapes in different reaches led to the obvious spatial patterns of antibiotics in the Kaidu River. Higher partition coefficient of antibiotic between SPS and water phases for sulfonamides than tetracyclines was because that tetracyclines strongly responded to clay contents while sulfonamides significantly responded to organic carbon contents in SPS. There were significant differences in detected antibiotic categories between the river and the lake. Fluoroquinolones (especially ciprofloxacin and enrofloxacin) were detected in the lake while sulphacetamide was only detected in the river. Therefore, the surrounding husbandry and aquaculture around the Bosten Lake was an important antibiotic pollution source in addition to inputs from the Kaidu River. This research suggested that alpine lakes could be an important sink of antibiotics in alpine dry regions, and thus impose greater threats to the aquatic ecosystem.


Assuntos
Rios , Poluentes Químicos da Água , Antibacterianos/análise , China , Ecossistema , Monitoramento Ambiental , Lagos , Poluentes Químicos da Água/análise
19.
Sci Total Environ ; 7872021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34949897

RESUMO

Current expectation is that projected climate change may have adverse effects on fish habitats and survival. The analysis leading to these concerns is typically done at large scale with limited possibility to quantify the local biological response and compare with previous conditions. Our research investigated the effects of recorded climate conditions on Chinook salmon (Oncorhynchus tshawytscha) spawning and rearing habitats and growth responses to the local climate and compared those conditions to predicted responses to a climate change. The study site was a 7 km long reach of Bear Valley Creek, an important spawning stream for this US Endangered Species Act listed species, in the Pacific Northwest of United States. We used 2D numerical modeling supported by accurate, high-resolution survey data to calculate flow hydraulics at various discharges from base to bankfull flows. For past and future conditions, computed flow hydraulics were combined with habitat suitability indices (SI) to compute spawning and rearing habitat suitability. Information on habitat suitability along with fish density and stream water temperature informed a growth model to quantify the potential fish size, an index of survival rates and fitness. Our results indicate that yearly-averaged rearing habitat quality remains similar to historic, but the timing of high- and low-quality habitat periods shift within the calendar year. Future spawning habitat quality may be significantly reduced during the seasonal period to which Chinook have currently adapted their spawning behavior. The growth model indicates an increase in anticipated size of Chinook salmon for predicted future climate conditions due to water temperature increase. Consequently, future climate conditions may have a substantial negative impact on spawning and limited impact on rearing conditions due to flow reduction and thus quality and extent of available habitat. However, the expected warmer stream water temperatures may benefit rearing, because of increased fish size in these high elevation streams.


Assuntos
Mudança Climática , Ecossistema , Animais , Peixes , Rios , Salmão
20.
Chemosphere ; 285: 131515, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34265705

RESUMO

In this study, we have investigated the purification efficiency during enhanced coagulation, ozone oxidation and their combined processes for the removal of trace amounts of EDCs in different DOM matrices. The results indicated that the maximum removal efficiency of EDCs occurred at or near pH 7.0 when measured over a pH range of 4.0-10.0. The addition of natural colloids had a two-part influence. While the floc generated by polyaluminium chloride (PAC) significantly increased in size from 198.0 µm to 290.4 µm with a simultaneous improvement in the removal efficiency of EDCs, the floc size generated by polyferric sulfate (PFS) had no worthwhile change except for a slight decrement. The removal efficiency of EDCs and the decrease in spectral parameters including UVA254, UVA280 and humic-like fluorescence during ozonation processes with and without pre-coagulation were investigated. During the ozonation process, efficient elimination of target EDCs are achieved at low O3 doses (O3/dissolved organic carbon (DOC) < 0.2) in different water matrices. The pH-titration differential absorbance spectra technique further demonstrated that the high reactivity of O3 to EDCs is owing to their phenolic moieties. In addition, when mgO3/mgDOC ratio reaches to ~0.40, >90% of estrogenic activity was eliminated. In a nutshell, ozonation with pre-coagulation together leads to considerably higher abatement of EDCs and estradiol (E2) equivalent values (EEQ) at the same ozone dosage than ozonation only process for wastewater treatment.


Assuntos
Disruptores Endócrinos , Ozônio , Poluentes Químicos da Água , Purificação da Água , Tecnologia , Águas Residuárias , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA