Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 845
Filtrar
1.
Front Oncol ; 14: 1387611, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39234394

RESUMO

Background: Carcinosarcoma is a rare esophageal tumor, accounting for approximately 0.27-2.8% of malignant esophageal tumors. This study aims to investigate the clinical pathological characteristics, surgical treatment outcomes, and analysis of prognostic factors in esophageal carcinosarcoma (ECS). Methods: Clinical data from sixteen patients diagnosed with esophageal sarcomatoid carcinoma who underwent surgical interventions were retrospectively analyzed. Clinical and pathological features, treatment modalities, and postoperative outcomes were systematically examined. Results: Out of the 1261 patients who underwent surgical treatment for esophageal cancer, 16 cases were pathologically confirmed as carcinosarcoma. Among them, two underwent neoadjuvant chemotherapy, six received postoperative chemotherapy. Carcinosarcomas predominantly occurred in the middle (43.75%) and lower (50%) segments of the esophagus. Among the 16 cases, 10 presented as polypoid, 4 as ulcerative, and 2 as medullary types. Microscopic examination revealed coexistence and transitional transitions between sarcomatous and carcinoma components. Pathological staging showed 5 cases in stage T1, 2 in stage T2, and 9 in stage T3, with lymph node metastasis observed in 8 cases (50%). TNM staging revealed 2 cases in stage I, 9 in stage II, and 5 in stage III. The overall 1, 3, and 5-year survival rates were 86.67%, 62.5%, and 57.14%, respectively. Univariate analysis indicated that pathological N staging influenced survival rates, while multivariate analysis demonstrated that pathological N staging was an independent prognostic factor. Conclusions: Carcinosarcoma is a rare esophageal tumor, accounting for approximately 0.27-2.8% of malignant esophageal tumors. Histologically, the biphasic pattern is a crucial diagnostic feature, although the carcinomatous component may not always be evident, especially in limited biopsies, leading to potential misclassification as pure sarcoma or squamous cell carcinoma. Despite its large volume and cellular atypia, carcinosarcoma carries a favorable prognosis. Complete surgical resection of the tumor and regional lymph node dissection is the preferred treatment approach for esophageal carcinosarcoma.

2.
J Am Chem Soc ; 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39318075

RESUMO

Creating C═C bonds as "weak" sites in the stable C-C chains of polyethylene (PE) is an appealing strategy to promote sustainable development of the polyolefin industry. Compared to methods, such as dehydrogenation and postpolymerization modification, the copolymerization of ethylene (E) and butadiene (BD) should be a convenient and direct approach to introduce C═C bonds in PE, whereas it encounters problems in controlling the composition and regularity of the copolymer due to the mismatched activities and mechanisms between the two monomers. Herein, we report by employing the amidinate gadolinium complex, controllable E/BD copolymerization was achieved, where BD was incorporated in the uniformly discrete 1,4 mode. The obtained copolymer possesses the same physical, mechanical, processing, and antioxygen (aging at 100 °C for 28 days) properties as commercial high-density-PE, which, strikingly, were degraded by C═C bonds into α,ω-telechelic oligomers with narrow distribution. These degraded functional products were transferred to compatibilizers via atom-transfer radical polymerization or immortal ring-opening polymerization, achieving upcycling.

3.
Front Public Health ; 12: 1416796, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39296844

RESUMO

Objective: To evaluate the association between musculoskeletal pain and incident sarcopenia and further explore the mediating effect of depressive symptoms among middle-aged and older Chinese adults. Methods: Using the data from the China Health and Retirement Longitudinal Study 2011 and 2015, we included 12,788 participants in the cross-sectional analysis and 8,322 for the longitudinal analysis. Musculoskeletal pains located in the neck, back, waist, shoulder, arm, wrist, leg, knee, and ankle were self-reported at baseline and follow-up. The diagnosis criteria of sarcopenia was based on the Asian Working Group for Sarcopenia 2019. Multivariable logistic regression models were used to evaluate the association between musculoskeletal pain, and the Karlson-Holm-Breen (KHB) method was used to explore the mediating effect of depressive symptoms. Results: Over the 4-year follow-up, 445 participants were identified with incident sarcopenia. In the longitudinal analysis, participants with baseline musculoskeletal pain (adjusted odds ratio (OR): 1.37, 95% confidence interval (CI): 1.07-1.76), persistent musculoskeletal pain (OR:1.68, 95%CI: 1.28-2.24), and persistent waist pain (OR:1.46, 95%CI: 1.04-2.03) were significantly associated with increased the risk of incident sarcopenia. Furthermore, depressive symptoms were found to partially mediate the association between musculoskeletal pain and incident sarcopenia. Conclusion: Persistent musculoskeletal pain, especially in waist area, was positively associated with a higher risk of sarcopenia among the middle-aged and older Chinese. Depressive symptoms played a partial mediating role in this association.


Assuntos
Depressão , Dor Musculoesquelética , Sarcopenia , Humanos , Masculino , Feminino , Sarcopenia/epidemiologia , China/epidemiologia , Depressão/epidemiologia , Pessoa de Meia-Idade , Dor Musculoesquelética/epidemiologia , Estudos Transversais , Estudos Longitudinais , Idoso , Fatores de Risco , Incidência
4.
J Biol Chem ; : 107767, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39276939

RESUMO

Trace elemental iron is an essential nutrient that participates in diverse metabolic processes. Dysregulation of cellular iron homeostasis, both iron deficiency and iron overload, is detrimental and tightly associated with diseases pathogenesis. IRPs-IREs system locates at the center for iron homeostasis regulation. Additionally, ferritinophagy, the autophagy-dependent ferritin catabolism for iron recycle, is emerging as a novel mechanism for iron homeostasis regulation. It is still unclear whether IRPs-IREs system and ferritinophagy are synergistic or redundant in determining iron homeostasis. Here we report that IRP2, but not IRP1, is indispensable for ferritinophagy in response to iron depletion. Mechanistically, IRP2 ablation results in compromised AMPK activation and defective ATG9A endosomal trafficking, leading to the decreased engulfment of NCOA4-ferritin complex by endosomes and the subsequent dysregulated endosomal microferritinophagy. Moreover, this defective endosomal microferritinophagy exacerbates DNA damage and reduces colony formation in IRP2 depleted cells. Collectively, this study expands the physiological function of IRP2 in endosomal microferritinophagy and highlights a potential crosstalk between IRPs-IREs and ferritinophagy in manipulating iron homeostasis.

5.
Water Res ; 265: 122217, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39128335

RESUMO

Phenols are the widely detected contaminants in the aquatic environment. Pyrogenic carbon (PyC) can mediate phenols degradation, but the specific properties of PyC or phenols influencing this reaction remain unknown. The present study investigated the kinetic process and mechanism of removal of various phenols by different PyC in aqueous phase system. To avoid the impact of the accumulated degradation byproducts on the overall reaction, we conducted a short-term experiment, quantified adsorption and degradation, and obtained reaction rate constants using a two-compartment first-order kinetics model. The adsorption rate constants (ka) of phenols by PyC were 10-220 times higher than degradation rate constants (kd), and they were positively correlated. Interestingly, no correlation was found between kd and common PyC properties, including functional groups, electron transfer capacities, and surface properties. Phenols were primarily attacked by •OH in the adsorbed phase. But neither the instantly trapped •OH, nor the accumulated •OH could explain phenol degradation. Chemical redox titration revealed that the electron transfer parameters, such as the electron donating rate constant (kED) of PyC, correlated well with kd (r>0.87, P < 0.05) of phenols. Analysis of 13 phenols showed that Egap and ELUMO negatively correlated with their kd, confirming the importance of the electronic properties of phenols to their degradation kinetics. This study highlights the importance of PyC electron transfer kinetics parameters for phenols degradation and manipulation of PyC electron transfer rate may accelerate organic pollutant removal, which contributes to a deeper understanding of the environmental behavior and application of PyC systems.


Assuntos
Carbono , Fenóis , Poluentes Químicos da Água , Fenóis/química , Poluentes Químicos da Água/química , Cinética , Adsorção , Carbono/química , Elétrons
6.
Sci Adv ; 10(34): eadp2877, 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39178268

RESUMO

Quantum communication networks are crucial for both secure communication and cryptographic networked tasks. Building quantum communication networks in a scalable and cost-effective way is essential for their widespread adoption. Here, we establish a complete polarization entanglement-based fully connected network, which features an ultrabright integrated Bragg reflection waveguide quantum source, managed by an untrusted service provider, and a streamlined polarization analysis module, which requires only one single-photon detector for each user. We perform a continuously working quantum entanglement distribution and create correlated bit strings between users. Within the framework of one-time universal hashing, we provide the experimental implementation of source-independent quantum digital signatures using imperfect keys circumventing the necessity for private amplification. We further beat the 1/3 fault tolerance bound in the Byzantine agreement, achieving unconditional security without relying on sophisticated techniques. Our results offer an affordable and practical route for addressing consensus challenges within the emerging quantum network landscape.

7.
Front Cardiovasc Med ; 11: 1363266, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39114559

RESUMO

Objective: This study aimed to characterize multivariate trajectories of blood pressure [systolic blood pressure (SBP) and diastolic blood pressure (DBP)] jointly and examine their impact on incident cardiovascular disease (CVD) among a Chinese elderly medical examination population. Methods: A total of 13,504 individuals without CVD during 2018-2020 were included from the Chinese geriatric physical examination cohort study. The group-based trajectory model was used to construct multi-trajectories of systolic blood pressure and diastolic blood pressure. The primary outcome was the incidence of the first CVD events, consisting of stroke and coronary heart diseases, in 2021. The Cox proportional hazards model was used to calculate the hazard ratios (HRs) and 95% confidence intervals (CIs) for the association between BP multi-trajectories and incident CVD events. Results: We identified four blood pressure (BP) subclasses, summarized by their SBP and DBP levels from low to high as class 1 (7.16%), class 2 (55.17%), class 3 (32.26%), and class 4 (5.41%). In 2021, we documented 890 incident CVD events. Compared with participants in class 1, adjusted HRs were 1.56 (95% CI: 1.12-2.19) for class 2, 1.75 (95% CI: 1.24-2.47) for class 3, and 1.88 (95% CI: 1.24-2.85) for class 4 after adjustment for demographics, health behaviors, and metabolic index. Individuals aged 65 years and above with higher levels of BP trajectories had higher risks of CVD events in China. Conclusions: Individuals with higher levels of both SBP and DBP trajectories over time were associated with an increased risk of incident CVD in the Chinese elderly population.

8.
Plants (Basel) ; 13(16)2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39204678

RESUMO

Callose, found in the cell walls of higher plants such as ß-1,3-glucan with ß-1,6 branches, is pivotal for both plant development and responses to biotic and abiotic stressors. Plasmodesmata (PD), membranous channels linking the cytoplasm, plasma membrane, and endoplasmic reticulum of adjacent cells, facilitate molecular transport, crucial for developmental and physiological processes. The regulation of both the structural and transport functions of PD is intricate. The accumulation of callose in the PD neck is particularly significant for the regulation of PD permeability. This callose deposition, occurring at a specific site of pathogenic incursion, decelerates the invasion and proliferation of pathogens by reducing the PD pore size. Scholarly investigations over the past two decades have illuminated pathogen-induced callose deposition and the ensuing PD regulation. This gradual understanding reveals the complex regulatory interactions governing defense-related callose accumulation and protein-mediated PD regulation, underscoring its role in plant defense. This review systematically outlines callose accumulation mechanisms and enzymatic regulation in plant defense and discusses PD's varied participation against viral, fungal, and bacterial infestations. It scrutinizes callose-induced structural changes in PD, highlighting their implications for plant immunity. This review emphasizes dynamic callose calibration in PD constrictions and elucidates the implications and potential challenges of this intricate defense mechanism, integral to the plant's immune system.

9.
Cell Biochem Biophys ; 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39115645

RESUMO

Cataracts are characterized as a disease affecting lens opacity. Endoplasmic reticulum (ER) stress can cause lens epithelial cell (LEC) dysfunction, affecting normal lens transparency and function, but the role of Tribbles 3 (TRB3), an inducible gene of ER stress, in cataracts is poorly understood. This study explored how TRB3 promotes cataract progression through ER stress. We administered a subcutaneous injection of sodium selenite at a dosage of 3.46 mg/kg to rats to create an animal model of cataracts. Additionally, we exposed rat LEC cells to 0.01 µM tunicamycin (TM) for 24 h to establish a cell model of ER stress. The detection of related genes and proteins was performed via RT‒qPCR and Western blot techniques. Flow cytometry, along with JC-1, TUNEL, and HE staining, was employed to assess damage to cells and lens tissues. This study revealed that TRB3 was abnormally highly expressed in both a cataract rat model and an ER stress cell model. Knocking down TRB3 has a similar effect as treatment with an ER stress inhibitor, effectively reversing the ER stress and apoptosis induced by TM. This effect includes increasing the mitochondrial membrane potential in LEC cells, lowering reactive oxygen species (ROS) levels, increasing ATP production, suppressing the expression of the apoptosis-related proteins Bax and C-caspase-3, increasing Bcl-2 expression, and decreasing apoptosis. Furthermore, TRB3 knockdown improved the pathological conditions of rat lenses and inhibited mitochondrial dysfunction and cell apoptosis to relieve the development of cataracts in rats. Mechanistically, CHOP promotes the expression of TRB3 by binding to the TRB3 promoter, thereby activating ER stress, leading to mitochondrial dysfunction and cell apoptosis in LEC cells and accelerating the development of cataracts. According to our findings, targeting TRB3 expression inhibition could emerge as a novel approach for cataract therapy.

10.
Sensors (Basel) ; 24(15)2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39123974

RESUMO

Current international optical science research focuses on the non-visual effects of lighting on human cognition, mood, and biological rhythms to enhance overall well-being. Nocturnal roadway lighting, in particular, has a substantial impact on drivers' physiological and psychological states, influencing behavior and safety. This study investigates the non-visual effects of correlated color temperature (CCT: 3000K vs. 4000K vs. 5000K) and illuminance levels (20 lx vs. 30 lx) of urban motor vehicle road lighting on driver alertness during various driving tasks. Conducted between 19:00 and 20:30, the experiments utilized a human-vehicle-light simulation platform. EEG (ß waves), reaction time, and subjective evaluations using the Karolinska Sleepiness Scale (KSS) were measured. The results indicated that the interaction between CCT and illuminance, as well as between CCT and task type, significantly influenced driver alertness. However, no significant effect of CCT and illuminance on reaction time was observed. The findings suggest that higher illuminance (30 lx) combined with medium CCT (4000K) effectively reduces reaction time. This investigation enriches related research, provides valuable reference for future studies, and enhances understanding of the mechanisms of lighting's influence on driver alertness. Moreover, the findings have significant implications for optimizing the design of urban road lighting.


Assuntos
Condução de Veículo , Cor , Iluminação , Veículos Automotores , Tempo de Reação , Temperatura , Humanos , Adulto , Masculino , Feminino , Tempo de Reação/fisiologia , Eletroencefalografia/métodos , Adulto Jovem , Atenção/fisiologia
11.
BMC Plant Biol ; 24(1): 632, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38970019

RESUMO

BACKGROUND: The myeloblastosis (MYB) transcription factor (TF) family is one of the largest and most important TF families in plants, playing an important role in a life cycle and abiotic stress. RESULTS: In this study, 268 Avena sativa MYB (AsMYB) TFs from Avena sativa were identified and named according to their order of location on the chromosomes, respectively. Phylogenetic analysis of the AsMYB and Arabidopsis MYB proteins were performed to determine their homology, the AsMYB1R proteins were classified into 5 subgroups, and the AsMYB2R proteins were classified into 34 subgroups. The conserved domains and gene structure were highly conserved among the subgroups. Eight differentially expressed AsMYB genes were screened in the transcriptome of transcriptional data and validated through RT-qPCR. Three genes in AsMYB2R subgroup, which are related to the shortened growth period, stomatal closure, and nutrient and water transport by PEG-induced drought stress, were investigated in more details. The AsMYB1R subgroup genes LHY and REV 1, together with GST, regulate ROS homeostasis to ensure ROS signal transduction and scavenge excess ROS to avoid oxidative damage. CONCLUSION: The results of this study confirmed that the AsMYB TFs family is involved in the homeostatic regulation of ROS under drought stress. This lays the foundation for further investigating the involvement of the AsMYB TFs family in regulating A. sativa drought response mechanisms.


Assuntos
Avena , Secas , Homeostase , Filogenia , Proteínas de Plantas , Espécies Reativas de Oxigênio , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Avena/genética , Avena/metabolismo , Regulação da Expressão Gênica de Plantas , Polietilenoglicóis/farmacologia , Família Multigênica , Estresse Fisiológico/genética , Estudo de Associação Genômica Ampla , Genoma de Planta
12.
Environ Sci Technol ; 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39020513

RESUMO

Microplastic-derived dissolved organic matter (MP-DOM) is an emerging carbon source in the environment. Interactions between MP-DOM and iron minerals alter the transformation of ferrihydrite (Fh) as well as the distribution and fate of MP-DOM. However, these interactions and their effects on both two components are not fully elucidated. In this study, we selected three types of MP-DOM as model substances and utilized Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) and extended X-ray absorption fine structure (EXAFS) spectroscopy to characterize the structural features of DOMs and DOM-mineral complexes at the molecular and atomic levels. Our results suggest that carboxyl and hydroxyl groups in MP-DOM increased the Fe-O bond length by 0.02-0.03 Å through interacting with Fe atoms in the first shell, thereby inhibiting the transformation of Fh to hematite (Hm). The most significant inhibition of Fh transformation was found in PS-DOM, followed by PBAT-DOM and PE-DOM. MP-DOM components, such as phenolic compounds and condensed polycyclic aromatics (MW > 360 Da) with high oxygen content and high unsaturation, exhibited stronger mineral adsorption affinity. These findings provide a profound theoretical basis for accurately predicting the behavior and fate of iron minerals as well as MP-DOM in complex natural environments.

13.
Glob Chang Biol ; 30(7): e17427, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39021313

RESUMO

Atmospheric nitrogen (N) deposition in forests can affect soil microbial growth and turnover directly through increasing N availability and indirectly through altering plant-derived carbon (C) availability for microbes. This impacts microbial residues (i.e., amino sugars), a major component of soil organic carbon (SOC). Previous studies in forests have so far focused on the impact of understory N addition on microbes and microbial residues, but the effect of N deposition through plant canopy, the major pathway of N deposition in nature, has not been explicitly explored. In this study, we investigated whether and how the quantities (25 and 50 kg N ha-1 year-1) and modes (canopy and understory) of N addition affect soil microbial residues in a temperate broadleaf forest under 10-year N additions. Our results showed that N addition enhanced the concentrations of soil amino sugars and microbial residual C (MRC) but not their relative contributions to SOC, and this effect on amino sugars and MRC was closely related to the quantities and modes of N addition. In the topsoil, high-N addition significantly increased the concentrations of amino sugars and MRC, regardless of the N addition mode. In the subsoil, only canopy N addition positively affected amino sugars and MRC, implying that the indirect pathway via plants plays a more important role. Neither canopy nor understory N addition significantly affected soil microbial biomass (as represented by phospholipid fatty acids), community composition and activity, suggesting that enhanced microbial residues under N deposition likely stem from increased microbial turnover. These findings indicate that understory N addition may underestimate the impact of N deposition on microbial residues and SOC, highlighting that the processes of canopy N uptake and plant-derived C availability to microbes should be taken into consideration when predicting the impact of N deposition on the C sequestration in temperate forests.


Assuntos
Carbono , Florestas , Nitrogênio , Microbiologia do Solo , Solo , Nitrogênio/metabolismo , Carbono/metabolismo , Carbono/análise , Solo/química , Amino Açúcares/metabolismo , Amino Açúcares/análise , Árvores/crescimento & desenvolvimento , Árvores/metabolismo
14.
Ageing Res Rev ; 99: 102383, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38955264

RESUMO

Globally, Alzheimer's disease (AD) is the most widespread chronic neurodegenerative disorder, leading to cognitive impairment, such as aphasia and agnosia, as well as mental symptoms, like behavioral abnormalities, that place a heavy psychological and financial burden on the families of the afflicted. Unfortunately, no particular medications exist to treat AD, as the current treatments only impede its progression.The link between AD and type 2 diabetes (T2D) has been increasingly revealed by research; the danger of developing both AD and T2D rises exponentially with age, with T2D being especially prone to AD. This has propelled researchers to investigate the mechanism(s) underlying this connection. A critical review of the relationship between insulin resistance, Aß, oxidative stress, mitochondrial hypothesis, abnormal phosphorylation of Tau protein, inflammatory response, high blood glucose levels, neurotransmitters and signaling pathways, vascular issues in AD and diabetes, and the similarities between the two diseases, is presented in this review. Grasping the essential mechanisms behind this detrimental interaction may offer chances to devise successful therapeutic strategies.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/terapia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/diagnóstico , Diabetes Mellitus Tipo 2/terapia , Diabetes Mellitus Tipo 2/complicações , Animais , Estresse Oxidativo/fisiologia
15.
Colloids Surf B Biointerfaces ; 242: 114076, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39003848

RESUMO

Hollow CuS nanoparticles can achieve photothermal and photodynamic therapy (PDT) in tumor treatment. However, excessive GSH in the tumor cells will consume the reactive oxygen species produced by PDT and reduce the PDT effect. Cisplatin is a broad-spectrum antineoplastic drug that can be used in a variety of tumor treatments. However, cisplatin is cytotoxic to normal cells while it kills tumor cells. Therefore, we construct Pt(IV) complexes loaded hollow CuS nanoparticles to attenuate the toxicity of cisplatin and enhance the PDT effect of the hollow CuS nanoparticles. The nanoparticles were proved to be able to accumulate around the tumor site through the enhanced permeability and retention (EPR) effect to achieve a synergistic chemo/photothermal/photodynamic therapy.


Assuntos
Antineoplásicos , Cobre , Nanopartículas , Fotoquimioterapia , Cobre/química , Cobre/farmacologia , Nanopartículas/química , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Animais , Cisplatino/farmacologia , Cisplatino/química , Camundongos , Linhagem Celular Tumoral , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Platina/química , Platina/farmacologia , Terapia Fototérmica , Sobrevivência Celular/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Sulfetos/química , Sulfetos/farmacologia , Tamanho da Partícula
16.
Mar Pollut Bull ; 206: 116677, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39018823

RESUMO

The relative importance of each sediment physicochemical property to sediment heavy-metal (HM) contents has not yet been quantitatively evaluated. Differences in the HM contents of mangrove surface sediments among the high, middle, and low intertidal zones, and their quantitative relationships to sediment physicochemical properties, were investigated in Dongzhaigang and Qinglan Harbor reserves, Hainan, China. In both reserves, the Cu and Ni concentrations increased significantly from the low to high intertidal zones; the patterns of change in the Mn and Pb contents were opposite in the two reserves. The Cr concentration was significantly lower and the Pb concentration was significantly higher in the dry season than in the wet season. Ecological risks of HM were higher in Dongzhaigang than in Qinglan Harbor. Regression and redundancy (hierarchical partitioning) analyses showed that the sediment total sulfur, nitrogen and potassium contents and pH were key factors affecting the HM contents of mangrove surface sediments.


Assuntos
Monitoramento Ambiental , Sedimentos Geológicos , Metais Pesados , Poluentes Químicos da Água , Áreas Alagadas , Sedimentos Geológicos/química , China , Metais Pesados/análise , Poluentes Químicos da Água/análise
17.
Redox Biol ; 75: 103211, 2024 09.
Artigo em Inglês | MEDLINE | ID: mdl-38908072

RESUMO

Ferroptosis is a pervasive non-apoptotic form of cell death highly relevant in various degenerative diseases and malignancies. The hallmark of ferroptosis is uncontrolled and overwhelming peroxidation of polyunsaturated fatty acids contained in membrane phospholipids, which eventually leads to rupture of the plasma membrane. Ferroptosis is unique in that it is essentially a spontaneous, uncatalyzed chemical process based on perturbed iron and redox homeostasis contributing to the cell death process, but that it is nonetheless modulated by many metabolic nodes that impinge on the cells' susceptibility to ferroptosis. Among the various nodes affecting ferroptosis sensitivity, several have emerged as promising candidates for pharmacological intervention, rendering ferroptosis-related proteins attractive targets for the treatment of numerous currently incurable diseases. Herein, the current members of a Germany-wide research consortium focusing on ferroptosis research, as well as key external experts in ferroptosis who have made seminal contributions to this rapidly growing and exciting field of research, have gathered to provide a comprehensive, state-of-the-art review on ferroptosis. Specific topics include: basic mechanisms, in vivo relevance, specialized methodologies, chemical and pharmacological tools, and the potential contribution of ferroptosis to disease etiopathology and progression. We hope that this article will not only provide established scientists and newcomers to the field with an overview of the multiple facets of ferroptosis, but also encourage additional efforts to characterize further molecular pathways modulating ferroptosis, with the ultimate goal to develop novel pharmacotherapies to tackle the various diseases associated with - or caused by - ferroptosis.


Assuntos
Ferroptose , Humanos , Animais , Ferro/metabolismo , Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Peroxidação de Lipídeos , Oxirredução , Suscetibilidade a Doenças
18.
Biol Res ; 57(1): 37, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824571

RESUMO

It is widely acknowledged that aging, mitochondrial dysfunction, and cellular phenotypic abnormalities are intricately associated with the degeneration of bone and cartilage. Consequently, gaining a comprehensive understanding of the regulatory patterns governing mitochondrial function and its underlying mechanisms holds promise for mitigating the progression of osteoarthritis, intervertebral disc degeneration, and osteoporosis. Mitochondrial hormesis, referred to as mitohormesis, represents a cellular adaptive stress response mechanism wherein mitochondria restore homeostasis and augment resistance capabilities against stimuli by generating reactive oxygen species (ROS), orchestrating unfolded protein reactions (UPRmt), inducing mitochondrial-derived peptides (MDP), instigating mitochondrial dynamic changes, and activating mitophagy, all prompted by low doses of stressors. The varying nature, intensity, and duration of stimulus sources elicit divergent degrees of mitochondrial stress responses, subsequently activating one or more signaling pathways to initiate mitohormesis. This review focuses specifically on the effector molecules and regulatory networks associated with mitohormesis, while also scrutinizing extant mechanisms of mitochondrial dysfunction contributing to bone and cartilage degeneration through oxidative stress damage. Additionally, it underscores the potential of mechanical stimulation, intermittent dietary restrictions, hypoxic preconditioning, and low-dose toxic compounds to trigger mitohormesis, thereby alleviating bone and cartilage degeneration.


Assuntos
Hormese , Mitocôndrias , Estresse Oxidativo , Humanos , Hormese/fisiologia , Mitocôndrias/fisiologia , Estresse Oxidativo/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Animais , Osteoartrite/terapia , Osteoartrite/fisiopatologia , Transdução de Sinais/fisiologia
19.
BJR Artif Intell ; 1(1): ubae006, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38828430

RESUMO

Innovation in medical imaging artificial intelligence (AI)/machine learning (ML) demands extensive data collection, algorithmic advancements, and rigorous performance assessments encompassing aspects such as generalizability, uncertainty, bias, fairness, trustworthiness, and interpretability. Achieving widespread integration of AI/ML algorithms into diverse clinical tasks will demand a steadfast commitment to overcoming issues in model design, development, and performance assessment. The complexities of AI/ML clinical translation present substantial challenges, requiring engagement with relevant stakeholders, assessment of cost-effectiveness for user and patient benefit, timely dissemination of information relevant to robust functioning throughout the AI/ML lifecycle, consideration of regulatory compliance, and feedback loops for real-world performance evidence. This commentary addresses several hurdles for the development and adoption of AI/ML technologies in medical imaging. Comprehensive attention to these underlying and often subtle factors is critical not only for tackling the challenges but also for exploring novel opportunities for the advancement of AI in radiology.

20.
Appl Opt ; 63(11): 2863-2867, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38856382

RESUMO

Using the self-developed fused indium wetting technology and planar waveguide, the uniform heat dissipation of the slab crystal and uniform pumping of the pump light were achieved, respectively. Based on the master oscillator power amplification (MOPA) scheme, the power was then amplified when the seed light source passed through the Nd:YAG slab crystal three times. Additionally, the image transfer system that we added to the amplified optical path achieved high beam quality. Finally, we obtained a rectangular pulsed laser with an output average power of 4461 W, a repetition frequency of 20 kHz, a pulse width of 62 ns, an optical-to-optical conversion efficiency of 26.8%, and a beam quality of ß x=7.0 and ß y=7.7.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA