Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 629(Pt A): 805-812, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36099848

RESUMO

Direct electrocatalytic reduction of nitrate (NO3-) is an efficient route to simultaneously synthesize ammonia (NH3) and remove NO3- pollutants under ambient conditions, however, it is hindered by the lack of efficient and stable catalysts. Herein, a self-supported spinel-type MnCo2O4 nanowire array is demonstrated for exclusively catalyzing the conversion of NO3- to NH3, achieving a high Faradic efficiency of 97.1% and a large NH3 yield of 0.67 mmol h-1 cm-2. Furthermore, density functional analysis reveals that MnCo2O4 (220) surface has high activity for NO3- reduction with a low energy barrier of 0.46 eV for *NO to *NOH.

2.
Chem Commun (Camb) ; 58(26): 4259-4262, 2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35289818

RESUMO

Electrocatalytic nitrate reduction is a sustainable approach to produce ammonia and remediate water pollutant nitrate. Here, we show that Co nanoparticle-decorated pomelo-peel-derived carbon is an efficient electrocatalyst for nitrate reduction to ammonia with a faradaic efficiency of 90.1% and a yield of 1.1 mmol h-1 mgcat.-1.

3.
ACS Appl Mater Interfaces ; 13(39): 46659-46664, 2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34569784

RESUMO

Ambient electrochemical oxygen reduction into valuable hydrogen peroxide (H2O2) via a selective two-electron (2e-) pathway is regarded as a sustainable alternative to the industrial anthraquinone process, but it requires advanced electrocatalysts with high activity and selectivity. In this study, we report that Mn-doped TiO2 behaves as an efficient electrocatalyst toward highly selective H2O2 synthesis. This catalyst exhibits markedly enhanced 2e- oxygen reduction reaction performance with a low onset potential of 0.78 V and a high H2O2 selectivity of 92.7%, much superior to the pristine TiO2 (0.64 V, 62.2%). Additionally, it demonstrates a much improved H2O2 yield of up to 205 ppm h-1 with good stability during bulk electrolysis in an H-cell device. The significantly boosted catalytic performance is ascribed to the lattice distortion of Mn-doped TiO2 with a large amount of oxygen vacancies and Ti3+. Density functional theory calculations reveal that Mn dopant improves the electrical conductivity and reduces ΔG*OOH of pristine TiO2, thus giving rise to a highly efficient H2O2 production process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...