Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 12451, 2024 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816469

RESUMO

The FZP gene plays a critical role in the formation of lateral branches and spikelets in rice panicle architecture. This study investigates the qSBN7 allele, a hypomorphic variant of FZP, and its influence on panicle architectures in different genetic backgrounds. We evaluated two backcross inbred lines (BILs), BC5_TCS10sbn and BC3_TCS10sbn, each possessing the homozygous qSBN7 allele but demonstrating differing degrees of spikelet degeneration. Our analysis revealed that BC5_TCS10sbn had markedly low FZP expression, which corresponded with an increase in axillary branches and severe spikelet degeneration. Conversely, BC3_TCS10sbn exhibited significantly elevated FZP expression, leading to fewer secondary and tertiary branches, and consequently decreased spikelet degeneration. Compared to BC5_TCS10sbn, BC3_TCS10sbn carries three additional chromosomal substitution segments from its donor parent, IR65598-112-2. All three segments significantly enhance the expression of FZP and reduce the occurrence of tertiary branch and spikelet degeneration. These findings enhance our understanding of the mechanisms regulating FZP and aid rice breeding efforts.


Assuntos
Oryza , Oryza/genética , Oryza/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Alelos , Patrimônio Genético , Melhoramento Vegetal , Genes de Plantas , Genoma de Planta , Fenótipo
2.
Pest Manag Sci ; 79(11): 4254-4263, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37341444

RESUMO

BACKGROUND: To gain a better understanding of how Pyricularia oryzae population shifts is important for selecting suitable resistance genes for rice breeding programs. However, the relationships between P. oryzae pathogenic dynamics, geographic distribution, rice varieties, and timeline are not well studied. RESULTS: Resistance genes Piz-5, Pi9(t), Pi12(t), Pi20(t), Pita-2, and Pi11 showed stable resistance to the Taiwan rice blast fungus over 8 years of observations. Furthermore, 1749 rice blast isolates were collected from 2014 to 2021 and categorized into five pathotype clusters based on their correlation analysis between the geographic sources and virulence of Lijiangxintuanheigu monogenic lines. A detailed map of their distributions in Taiwan is presented. Isolates collected from the western region of Taiwan had greater pathotype diversity than those from the east region. Isolates collected from the subtropical region had greater diversity than those from the tropical region. Rice cultivars carrying Pik alleles were highly susceptible to pathotype L4. Cultivars with Piz-t were highly susceptible to pathotype L5, and those with Pish were highly susceptible to pathotype L1. The geographical distribution of each pathotype was distinct, and the population size of each pathotype fluctuated significantly each year. CONCLUSION: The regional mega cultivars significantly impact the evolution of Pyricularia oryzae in Taiwan within the span of 8 years. However, the annual fluctuation of pathotype populations likely correlate to the rising annual temperatures that selected pathotype clusters by their optimal growth temperature. The results will provide useful information for effective disease management, and enable the R-genes to prolong their function in the fields. © 2023 Society of Chemical Industry.


Assuntos
Magnaporthe , Oryza , Magnaporthe/genética , Taiwan , Oryza/genética , Doenças das Plantas/microbiologia , Melhoramento Vegetal
3.
Plant Dis ; 106(12): 3187-3197, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35581907

RESUMO

Rice blast caused by Magnaporthe oryzae is a dangerous threat to rice production and food security worldwide. Breeding and proper deployment of resistant varieties are effective and environmentally friendly strategies to manage this notorious disease. However, a highly dynamic and quickly evolved rice blast pathogen population in the field has made disease control with resistance germplasms more challenging. Therefore, continued monitoring of pathogen dynamics and application of effective resistance varieties are critical tasks to prolong or sustain field resistance. Here, we report a team project that involved evaluation of rice blast resistance genes and surveillance of M. oryzae field populations in Taiwan. A set of International Rice Research Institute-bred blast-resistant lines (IRBLs) carrying single blast resistance genes was utilized to monitor the field effectiveness of rice blast resistance. Resistance genes such as Ptr (formerly Pita2) and Pi9 exhibited the best and most durable resistance against the rice blast fungus population in Taiwan. Interestingly, line IRBLb-B harboring the Pib gene with good field protection has recently shown susceptible lesions in some locations. To dissect the genotypic features of virulent isolates against the Pib resistance gene, M. oryzae isolates were collected and analyzed. Screening of the AvrPib locus revealed that the majority of field isolates still maintained the wild-type AvrPib status but eight virulent genotypes were found. Pot3 insertion appeared to be a major way to disrupt the AvrPib avirulence function. Interestingly, a novel AvrPib double-allele genotype among virulent isolates was first identified. Pot2 repetitive element-based polymerase chain reaction (rep-PCR) fingerprinting analysis indicated that mutation events may occur independently among different lineages in different geographic locations of Taiwan. This study provides our surveillance experience of rice blast disease and serves as the foundation to sustain rice production.


Assuntos
Magnaporthe , Oryza , Magnaporthe/genética , Doenças das Plantas/microbiologia , Oryza/genética , Oryza/microbiologia , Taiwan , Melhoramento Vegetal
4.
Genetics ; 215(1): 243-252, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32152046

RESUMO

Secondary branch number per panicle plays a crucial role in regulating grain number and yield in rice. Here, we report the positional cloning and functional characterization for SECONDARY BRANCH NUMBER7 (qSBN7), a quantitative trait locus affecting secondary branch per panicle and grain number. Our research revealed that the causative variants of qSBN7 are located in the distal promoter region of FRIZZLE PANICLE (FZP), a gene previously associated with the repression of axillary meristem development in rice spikelets. qSBN7 is a novel allele of FZP that causes an ∼56% decrease in its transcriptional level, leading to increased secondary branch and grain number, and reduced grain length. Field evaluations showed that qSBN7 increased grain yield by 10.9% in a temperate japonica variety, TN13, likely due to its positive effect on sink capacity. Our findings suggest that incorporation of qSBN7 can increase yield potential and improve the breeding of elite rice varieties.


Assuntos
Grão Comestível/genética , Oryza/genética , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas , Locos de Características Quantitativas , Grão Comestível/crescimento & desenvolvimento , Oryza/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
5.
Breed Sci ; 67(4): 340-347, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29085243

RESUMO

Secondary branch number (SBN) is an important component affecting spikelet number per panicle (SPP) and yield in rice. During recurrent backcross breeding, four BC2F4 populations derived from the high-yield donor parent IR65598-112-2 and the recurrent parent Tainan 13 (a local japonica cultivar) showed discontinuous variations of SPP and SBN within populations. Genetic analysis of 92 BC2F4 individuals suggested that both SPP and SBN are controlled by a single recessive allele. Two parents and 37 BC2F4 individuals showing high- and low-SBN type phenotypes were analyzed by restriction-site associated DNA sequencing (RAD-seq). Based on 2,522 reliable SNPs, the qSBN7 was mapped to a distal region of the long arm of chromosome 7. Trait-marker association analysis with an additional 166 high-SBN type BC2F4 individuals and 8 newly developed cleaved amplified polymorphic sequence markers further delimited the qSBN7 locus to a 601.4-kb region between the markers SNP2788 and SNP2849. Phenotype evaluation of two BC2F5 backcross inbred lines revealed that qSBN7 increased SPP by 83.2% and SBN by 61.0%. The qSBN7 of IR65598-112-2 could be used for improving reproductive sink capacity in rice.

6.
Artigo em Inglês | MEDLINE | ID: mdl-28025342

RESUMO

MicroRNAs (miRNAs) are known to play critical roles in plant development and stress-response regulation, and they frequently display multi-targeting characteristics. The control of defined rice phenotypes occurs through multiple genes; however, evidence demonstrating the relationship between agronomic traits and miRNA expression profiles is lacking. In this study, we investigated eight yield-related traits in 187 local rice cultivars and profiled the expression levels of 193 miRNAs in these cultivars using microarray analyses. By integrating the miRBase database, the rice annotation project database, and the miRanda and psRNATarget web servers, we constructed a database (RiceATM) that can be employed to investigate the association between rice agronomic traits and miRNA expression. The functions of this platform include phenotype selection, sample grouping, microarray data pretreatment, statistical analysis and target gene predictions. To demonstrate the utility of RiceATM, we used the database to identify four miRNAs associated with the heading date and validated their expression trends in the cultivars with early or late heading date by real-time PCR. RiceATM is a useful tool for researchers seeking to characterize the role of certain miRNAs for a specific phenotype and discover potential biomarkers for breeding or functional studies.Database URL: http://syslab3.nchu.edu.tw/rice/.


Assuntos
Produtos Agrícolas , Bases de Dados Genéticas , Regulação da Expressão Gênica de Plantas , Oryza , Locos de Características Quantitativas , RNA de Plantas , Software , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Genoma de Planta , MicroRNAs/biossíntese , MicroRNAs/genética , Anotação de Sequência Molecular , Oryza/genética , Oryza/metabolismo , RNA de Plantas/biossíntese , RNA de Plantas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...