Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Invest Ophthalmol Vis Sci ; 64(15): 15, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38095908

RESUMO

Purpose: The underlying mechanism of congenital cataracts caused by deficiency or mutation of junctional adhesion molecule C (JAM-C) gene remains unclear. Our study aims to elucidate the abnormal developmental process in Jamc-/- lenses and reveal the genes related to lens development that JAM-C may regulate. Methods: Jamc knockout (Jamc-/-) mouse embryos and pups were generated for in vivo studies. Four key developmental stages from embryonic day (E) 12.5 to postnatal day (P) 0.5 were selected for the following experiments. Hematoxylin and eosin staining was used for histological analysis. The 5-bromo-2'-deoxyuridine (BrdU) incorporation assay and TUNEL staining were performed to label lens epithelial cell (LEC) proliferation and apoptosis, respectively. Immunofluorescence and Western blot were used to analyze the markers of lens epithelium, cell cycle exit, and lens fiber differentiation. Results: JAM-C was expressed throughout the process of lens development. Deletion of Jamc resulted in decreased lens size and disorganized lens fibers, which arose from E16.5 and aggravated gradually. The LECs of Jamc-/- lenses showed decreased quantity and proliferation, accompanied with reduction of key transcription factor, FOXE3. The fibers in Jamc-/- lenses were disorganized. Moreover, Jamc-deficient lens fibers showed significantly altered distribution patterns of Cx46 and Cx50. The marker of fiber homeostasis, γ-crystallin, was also decreased in the inner cortex and core fibers of Jamc-/- lenses. Conclusions: Deletion of JAM-C exhibits malfunction of LEC proliferation and fiber maturation during murine lens development, which may be related to the downregulation of FOXE3 expression and abnormal localization patterns of Cx46 and Cx50.


Assuntos
Molécula C de Adesão Juncional , Cristalino , Animais , Camundongos , Diferenciação Celular/fisiologia , Proliferação de Células , Células Epiteliais/metabolismo , Epitélio , Molécula C de Adesão Juncional/metabolismo , Cristalino/metabolismo , Camundongos Knockout
2.
Signal Transduct Target Ther ; 8(1): 305, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37591843

RESUMO

Although VEGF-B was discovered as a VEGF-A homolog a long time ago, the angiogenic effect of VEGF-B remains poorly understood with limited and diverse findings from different groups. Notwithstanding, drugs that inhibit VEGF-B together with other VEGF family members are being used to treat patients with various neovascular diseases. It is therefore critical to have a better understanding of the angiogenic effect of VEGF-B and the underlying mechanisms. Using comprehensive in vitro and in vivo methods and models, we reveal here for the first time an unexpected and surprising function of VEGF-B as an endogenous inhibitor of angiogenesis by inhibiting the FGF2/FGFR1 pathway when the latter is abundantly expressed. Mechanistically, we unveil that VEGF-B binds to FGFR1, induces FGFR1/VEGFR1 complex formation, and suppresses FGF2-induced Erk activation, and inhibits FGF2-driven angiogenesis and tumor growth. Our work uncovers a previously unrecognized novel function of VEGF-B in tethering the FGF2/FGFR1 pathway. Given the anti-angiogenic nature of VEGF-B under conditions of high FGF2/FGFR1 levels, caution is warranted when modulating VEGF-B activity to treat neovascular diseases.


Assuntos
Fator 2 de Crescimento de Fibroblastos , Fator B de Crescimento do Endotélio Vascular , Humanos , Fator 2 de Crescimento de Fibroblastos/genética , Imunoterapia , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética
4.
J Cell Commun Signal ; 17(1): 151-165, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36284029

RESUMO

Although mitogen-inducible gene 6 (MIG6) is highly expressed in vascular endothelial cells, it remains unknown whether MIG6 affects vascular permeability. Here, we show for the first time a critical role of MIG6 in limiting vascular permeability. We unveil that genetic deletion of Mig6 in mice markedly increased VEGFA-induced vascular permeability, and MIG6 knockdown impaired endothelial barrier function. Mechanistically, we reveal that MIG6 inhibits VEGFR2 phosphorylation by binding to the VEGFR2 kinase domain 2, and MIG6 knockdown increases the downstream signaling of VEGFR2 by enhancing phosphorylation of PLCγ1 and eNOS. Moreover, MIG6 knockdown disrupted the balance between RAC1 and RHOA GTPase activation, leading to endothelial cell barrier breakdown and the elevation of vascular permeability. Our findings demonstrate an essential role of MIG6 in maintaining endothelial cell barrier integrity and point to potential therapeutic implications of MIG6 in the treatment of diseases involving vascular permeability. Xing et al. (2022) investigated the critical role of MIG6 in vascular permeability. MIG6 deficiency promotes VEGFA-induced vascular permeability via activation of PLCγ1-Ca2+-eNOS signaling and perturbation of the balance in RAC1/RHOA activation, resulting in endothelial barrier disruption.

5.
Invest Ophthalmol Vis Sci ; 63(10): 1, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36048019

RESUMO

Purpose: The malfunction of junctional adhesion molecule C (JAM-C) has been reported to induce congenital cataract in humans and mice; however, specific characters and the mechanism of this cataract are still unclear. This study aimed to characterize abnormal lens development in Jamc knockout mice and clarify the underlying mechanism. Methods: Jamc knockout mice backcrossed onto the C57BL/6 genetic background were used for this research. Slit-lamp and darkfield images showed the cataract phenotype of Jamc-/- mice. Hematoxylin and eosin staining was performed to visualize the morphological and histological features. RNA sequencing was applied to detect differentially expressed genes. Quantitative RT-PCR, western blot, and immunofluorescence were used to determine the level of unfolded protein response (UPR)-related genes. TUNEL staining was utilized to label cell death. Results: Jamc knockout mice exhibited nuclear cataract with abnormal lens morphology and defective degradation of nuclei and organelles in lens fiber cells. Compared with wild-type control mice, the expression level of BiP, CHOP, TRIB3, and CHAC1, genes involved in endoplasmic reticulum stress and the UPR, were highly upregulated in Jamc-/- lenses, suggesting that abnormal lens development was accompanied by UPR activation. Moreover, increased cell death was also found in Jamc-/- lenses. Conclusions: Congenital nuclear cataract caused by Jamc deficiency is accompanied by defective degradation of nuclei and organelles in lens fiber cells, lens structure disorder, and UPR activation, suggesting that JAM-C is required for maintaining normal lens development and that UPR activation is involved in cataract formation in Jamc-deficient lenses.


Assuntos
Catarata , Cristalino , Animais , Catarata/metabolismo , Humanos , Cristalino/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Resposta a Proteínas não Dobradas
6.
Comput Math Methods Med ; 2022: 8418048, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36081436

RESUMO

Breast cancer is one of the most widespread and fatal cancers in women. At present, anticancer drug-inhibiting estrogen receptor α subtype (ERα) can greatly improve the cure rate for breast cancer patients, so the research and development of this kind of drugs are very urgent. In this paper, the problem of how to screen excellent anticancer drugs is abstracted as an optimization problem. Firstly, the graph model is used to extract low-dimensional features with strong distinguishing and describing ability according to various attributes of candidate compounds, and then, kernel functions are used to map these features to high-dimensional space. Then, the quantitative analysis model of ERα biological activity and the classification model based on ADMET properties of the support vector machine are constructed. Finally, sequential least square programming (SLSQP) is utilized to solve the ERα biological activity model. The experimental results show that for anticancer data sets, compared with principal component analysis (PCA), the error rate of the graph model constructed in this paper is reduced by 6.4%, 15%, and 7.8% on mean absolute error (MAE), mean squared error (MSE), and root mean square error (RMSE), respectively. In terms of classification prediction, compared with principal component analysis (PCA), the recall and precision rates of this method are enhanced by 19.5% and 12.41%, respectively. Finally, the optimal biological activity value (IC50_nM) 34.6 and inhibitory biological activity value (pIC50) 7.46 were obtained.


Assuntos
Receptor alfa de Estrogênio , Neoplasias , Algoritmos , Feminino , Humanos , Análise de Componente Principal , Máquina de Vetores de Suporte
7.
Mikrochim Acta ; 189(6): 229, 2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35610519

RESUMO

An impedimetric sensing strategy was developed for sensitively determining diethylstilbestrol (DES) based on a platform of porphyrin-containing covalent-organic framework (p-COF). The p-COF was synthesized using 5,10,15,20-tetra (4-aminophenyl) porphyrin (TAPP) and 1,3,6,8-tetrakis(4-formylphenyl) pyrene (TFPy) as building blocks via condensation reaction, for which p-COF was named as TAPP-TFPy-COF. Considering the large specific surface area (302.9 m2 g-1), high porosity, rich nitrogen functionality, superior electrochemical activity, and strong bioaffinity toward DNA strands, the TAPP-TFPy-COF-based platform exhibited enhanced, non-label, and amplified electrochemical signal, large number of immobilized DES-targeted aptamer strands, and fast-response toward the analyte. Electrochemical results reveal that the TAPP-TFPy-COF-based aptasensor promoted the sensing performance for the detection of DES, resulting in an extremely low limit of detection of 0.42 fg mL-1 within a DES concentration ranging from 1 fg mL-1 to 0.1 pg mL-1, which was substantially lower than those of most reported DES sensors. Furthermore, the TAPP-TFPy-COF-based aptasensor possessed outperformed stability, high selectivity, ascendant reproducibility, and acceptable applicability in diverse environments. The recovery values for DES detection in milk, tap water, and frozen shrimp were in the range 91.80-118.50% with low relative standard deviation of 0.11-4.26%. This work provides a new sensing electrochemical approach based on COF network for DES detection and shows a deep insight into the construction of COF-based biosensors, which can be extended to be used for other target compounds.


Assuntos
Aptâmeros de Nucleotídeos , Estruturas Metalorgânicas , Porfirinas , Aptâmeros de Nucleotídeos/química , Dietilestilbestrol , Limite de Detecção , Estruturas Metalorgânicas/química , Porfirinas/química , Reprodutibilidade dos Testes
8.
Mikrochim Acta ; 188(10): 316, 2021 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-34476615

RESUMO

A novel label-free surface plasmon resonance (SPR) aptasensor has been constructed for the detection of N-gene of SARS-CoV-2 by using thiol-modified niobium carbide MXene quantum dots (Nb2C-SH QDs) as the bioplatform for anchoring N-gene-targeted aptamer. In the presence of SARS-CoV-2 N-gene, the immobilized aptamer strands changed their conformation to specifically bind with N-gene. It thus increased the contact area or enlarged the distance between aptamer and the SPR chip, resulting in a change of the SPR signal irradiated by the laser (He-Ne) with the wavelength (λ) of 633 nm. Nb2C QDs were derived from Nb2C MXene nanosheets via a solvothermal method, followed by functionalization with octadecanethiol through a self-assembling method. Subsequently, the gold chip for SPR measurements was modified with Nb2C-SH QDs via covalent binding of the Au-S bond also by self-assembling interaction. Nb2C-SH QDs not only resulted in high bioaffinity toward aptamer but also enhanced the SPR response. Thus, the Nb2C-SH QD-based SPR aptasensor had low limit of detection (LOD) of 4.9 pg mL-1 toward N-gene within the concentration range 0.05 to 100 ng mL-1. The sensor also showed excellent selectivity in the presence of various respiratory viruses and proteins in human serum and high stability. Moreover, the Nb2C-SH QD-based SPR aptasensor displayed a vast practical application for the qualitative analysis of N-gene from different samples, including seawater, seafood, and human serum. Thus, this work can provide a deep insight into the construction of the aptasensor for detecting SARS-CoV-2 in complex environments. A novel label-free surface plasmon resonance aptasensor has been constructed to detect sensitively and selectively the N-gene of SARS-CoV-2 by using thiol-modified niobium carbide MXene quantum dots as the scaffold to anchor the N-gene-targeted aptamer.


Assuntos
Aptâmeros de Nucleotídeos , COVID-19/diagnóstico , Nióbio/química , Nucleocapsídeo/metabolismo , Pontos Quânticos/química , SARS-CoV-2/isolamento & purificação , Ressonância de Plasmônio de Superfície/métodos , COVID-19/virologia , Humanos , Limite de Detecção
9.
STAR Protoc ; 2(3): 100508, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34585146

RESUMO

Endothelial cells (ECs) harbor distinct phenotypical and functional characteristics depending on their tissue localization and contribute to brain, eye, lung, and muscle diseases such as dementia, macular degeneration, pulmonary hypertension, and sarcopenia. To study their function, isolation of pure ECs in high quantities is crucial. Here, we describe protocols for rapid and reproducible blood vessel EC purification established for scRNA sequencing from murine tissues using mechanical and enzymatic digestion followed by magnetic and fluorescence-activated cell sorting. For complete details on the use and execution of these protocol, please refer to Kalucka et al. (2020), Rohlenova et al. (2020), and Goveia et al. (2020).


Assuntos
Encéfalo/citologia , Corioide/citologia , Células Endoteliais/citologia , Pulmão/citologia , Músculos/citologia , Animais , Citometria de Fluxo/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL
10.
STAR Protoc ; 2(3): 100523, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34382011

RESUMO

Endothelial cells (ECs) exhibit phenotypic and functional tissue specificities, critical for studies in the vascular field and beyond. Thus, tissue-specific methods for isolation of highly purified ECs are necessary. Kidney, spleen, and testis ECs are relevant players in health and diseases such as chronic kidney disease, acute kidney injury, myelofibrosis, and cancer. Here, we provide tailored protocols for rapid and reproducible EC purification established for scRNA sequencing from these adult murine tissues using the combination of magnetic- and fluorescence-activated cell sorting. For complete details on the use and execution of these protocols, please refer to Kalucka et al. (2020) and Dumas et al. (2020).


Assuntos
Células Endoteliais/citologia , Rim/citologia , Baço/citologia , Testículo/citologia , Animais , Citometria de Fluxo , Masculino , Camundongos
11.
STAR Protoc ; 2(2): 100489, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-34007969

RESUMO

Endothelial cells (ECs) from the small intestine, colon, liver, and heart have distinct phenotypes and functional adaptations that are dependent on their physiological environment. Gut ECs adapt to low oxygen, heart ECs to contractile forces, and liver ECs to low flow rates. Isolating high-purity ECs in sufficient quantities is crucial to study their functions. Here, we describe protocols combining magnetic and fluorescent activated cell sorting for rapid and reproducible EC purification from four adult murine tissues. For complete details on the use and execution of these protocols, please refer to Kalucka et al. (2020).


Assuntos
Células Endoteliais/citologia , Citometria de Fluxo/métodos , Intestinos/citologia , Fígado/citologia , Miocárdio/citologia , Animais , Células Cultivadas , Masculino , Camundongos , Camundongos Endogâmicos C57BL
12.
Front Cell Dev Biol ; 9: 634242, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33693003

RESUMO

The mitogen-inducible gene 6 (MIG6) is an adaptor protein widely expressed in vascular endothelial cells. However, it remains unknown thus far whether it plays a role in angiogenesis. Here, using comprehensive in vitro and in vivo model systems, we unveil a potent anti-angiogenic effect of MIG6 in retinal development and neovascularization and the underlying molecular and cellular mechanisms. Loss of function assays using genetic deletion of Mig6 or siRNA knockdown increased angiogenesis in vivo and in vitro, while MIG6 overexpression suppressed pathological angiogenesis. Moreover, we identified the cellular target of MIG6 by revealing its direct inhibitory effect on vascular endothelial cells (ECs). Mechanistically, we found that the anti-angiogenic effect of MIG6 is fulfilled by binding to SHC1 and inhibiting its phosphorylation. Indeed, SHC1 knockdown markedly diminished the effect of MIG6 on ECs. Thus, our findings show that MIG6 is a potent endogenous inhibitor of angiogenesis that may have therapeutic value in anti-angiogenic therapy.

13.
Cell ; 180(4): 764-779.e20, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-32059779

RESUMO

The heterogeneity of endothelial cells (ECs) across tissues remains incompletely inventoried. We constructed an atlas of >32,000 single-EC transcriptomes from 11 mouse tissues and identified 78 EC subclusters, including Aqp7+ intestinal capillaries and angiogenic ECs in healthy tissues. ECs from brain/testis, liver/spleen, small intestine/colon, and skeletal muscle/heart pairwise expressed partially overlapping marker genes. Arterial, venous, and lymphatic ECs shared more markers in more tissues than did heterogeneous capillary ECs. ECs from different vascular beds (arteries, capillaries, veins, lymphatics) exhibited transcriptome similarity across tissues, but the tissue (rather than the vessel) type contributed to the EC heterogeneity. Metabolic transcriptome analysis revealed a similar tissue-grouping phenomenon of ECs and heterogeneous metabolic gene signatures in ECs between tissues and between vascular beds within a single tissue in a tissue-type-dependent pattern. The EC atlas taxonomy enabled identification of EC subclusters in public scRNA-seq datasets and provides a powerful discovery tool and resource value.


Assuntos
Células Endoteliais/metabolismo , Análise de Célula Única , Transcriptoma , Animais , Encéfalo/citologia , Sistema Cardiovascular/citologia , Células Endoteliais/classificação , Células Endoteliais/citologia , Trato Gastrointestinal/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculos/citologia , Especificidade de Órgãos , RNA-Seq , Testículo/citologia
14.
J Am Soc Nephrol ; 31(1): 118-138, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31818909

RESUMO

BACKGROUND: Renal endothelial cells from glomerular, cortical, and medullary kidney compartments are exposed to different microenvironmental conditions and support specific kidney processes. However, the heterogeneous phenotypes of these cells remain incompletely inventoried. Osmotic homeostasis is vitally important for regulating cell volume and function, and in mammals, osmotic equilibrium is regulated through the countercurrent system in the renal medulla, where water exchange through endothelium occurs against an osmotic pressure gradient. Dehydration exposes medullary renal endothelial cells to extreme hyperosmolarity, and how these cells adapt to and survive in this hypertonic milieu is unknown. METHODS: We inventoried renal endothelial cell heterogeneity by single-cell RNA sequencing >40,000 mouse renal endothelial cells, and studied transcriptome changes during osmotic adaptation upon water deprivation. We validated our findings by immunostaining and functionally by targeting oxidative phosphorylation in a hyperosmolarity model in vitro and in dehydrated mice in vivo. RESULTS: We identified 24 renal endothelial cell phenotypes (of which eight were novel), highlighting extensive heterogeneity of these cells between and within the cortex, glomeruli, and medulla. In response to dehydration and hypertonicity, medullary renal endothelial cells upregulated the expression of genes involved in the hypoxia response, glycolysis, and-surprisingly-oxidative phosphorylation. Endothelial cells increased oxygen consumption when exposed to hyperosmolarity, whereas blocking oxidative phosphorylation compromised endothelial cell viability during hyperosmotic stress and impaired urine concentration during dehydration. CONCLUSIONS: This study provides a high-resolution atlas of the renal endothelium and highlights extensive renal endothelial cell phenotypic heterogeneity, as well as a previously unrecognized role of oxidative phosphorylation in the metabolic adaptation of medullary renal endothelial cells to water deprivation.


Assuntos
Adaptação Fisiológica/genética , Células Endoteliais/metabolismo , Rim/citologia , Análise de Sequência de RNA , Privação de Água/fisiologia , Animais , Células Endoteliais/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo
15.
Pharmacol Res ; 143: 33-39, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30851357

RESUMO

Oxidative stress, due to insufficiency of antioxidants or over-production of oxidants, can lead to severe cell and tissue damage. Oxidative stress occurs constantly and has been shown to be involved in innumerable diseases, such as degenerative, cardiovascular, neurological, and metabolic disorders, cancer, and aging, thus highlighting the vital need of antioxidant defense mechanisms. Vascular endothelial growth factor B (VEGF-B) was discovered a long time ago, and is abundantly expressed in most types of cells and tissues. VEGF-B remained functionally mysterious for many years and later on has been shown to be minimally angiogenic. Recently, VEGF-B is reported to be a potent antioxidant by boosting the expression of key antioxidant enzymes. Thus, one major role of VEGF-B lies in safeguarding tissues and cells from oxidative stress-induced damage. VEGF-B may therefore have promising therapeutic utilities in treating oxidative stress-related diseases. In this review, we discuss the current knowledge on the newly discovered antioxidant function of VEGF-B and the related molecular mechanisms, particularly, in relationship to some oxidative stress-related diseases, such as retinitis pigmentosa, age-related macular degeneration, diabetic retinopathy, glaucoma, amyotrophic lateral sclerosis, Alzheimer's disease, and Parkinson's disease.


Assuntos
Antioxidantes/uso terapêutico , Oftalmopatias/tratamento farmacológico , Doenças Neurodegenerativas/tratamento farmacológico , Fator B de Crescimento do Endotélio Vascular/uso terapêutico , Animais , Antioxidantes/farmacologia , Oftalmopatias/metabolismo , Humanos , Doenças Neurodegenerativas/metabolismo , Fator B de Crescimento do Endotélio Vascular/metabolismo , Fator B de Crescimento do Endotélio Vascular/farmacologia
16.
Cell Metab ; 28(6): 866-880.e15, 2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30146486

RESUMO

The role of fatty acid synthesis in endothelial cells (ECs) remains incompletely characterized. We report that fatty acid synthase knockdown (FASNKD) in ECs impedes vessel sprouting by reducing proliferation. Endothelial loss of FASN impaired angiogenesis in vivo, while FASN blockade reduced pathological ocular neovascularization, at >10-fold lower doses than used for anti-cancer treatment. Impaired angiogenesis was not due to energy stress, redox imbalance, or palmitate depletion. Rather, FASNKD elevated malonyl-CoA levels, causing malonylation (a post-translational modification) of mTOR at lysine 1218 (K1218). mTOR K-1218 malonylation impaired mTOR complex 1 (mTORC1) kinase activity, thereby reducing phosphorylation of downstream targets (p70S6K/4EBP1). Silencing acetyl-CoA carboxylase 1 (an enzyme producing malonyl-CoA) normalized malonyl-CoA levels and reactivated mTOR in FASNKD ECs. Mutagenesis unveiled the importance of mTOR K1218 malonylation for angiogenesis. This study unveils a novel role of FASN in metabolite signaling that contributes to explaining the anti-angiogenic effect of FASN blockade.


Assuntos
Ácido Graxo Sintase Tipo I/fisiologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Malonil Coenzima A/metabolismo , Neovascularização Retiniana/patologia , Serina-Treonina Quinases TOR/metabolismo , Acetil-CoA Carboxilase/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Proliferação de Células , Ácido Graxo Sintase Tipo I/antagonistas & inibidores , Ácido Graxo Sintase Tipo I/genética , Células Endoteliais da Veia Umbilical Humana/citologia , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Orlistate/uso terapêutico , Processamento de Proteína Pós-Traducional , Neovascularização Retiniana/tratamento farmacológico
17.
Cell Metab ; 28(6): 881-894.e13, 2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30146488

RESUMO

Little is known about the metabolism of quiescent endothelial cells (QECs). Nonetheless, when dysfunctional, QECs contribute to multiple diseases. Previously, we demonstrated that proliferating endothelial cells (PECs) use fatty acid ß-oxidation (FAO) for de novo dNTP synthesis. We report now that QECs are not hypometabolic, but upregulate FAO >3-fold higher than PECs, not to support biomass or energy production but to sustain the tricarboxylic acid cycle for redox homeostasis through NADPH regeneration. Hence, endothelial loss of FAO-controlling CPT1A in CPT1AΔEC mice promotes EC dysfunction (leukocyte infiltration, barrier disruption) by increasing endothelial oxidative stress, rendering CPT1AΔEC mice more susceptible to LPS and inflammatory bowel disease. Mechanistically, Notch1 orchestrates the use of FAO for redox balance in QECs. Supplementation of acetate (metabolized to acetyl-coenzyme A) restores endothelial quiescence and counters oxidative stress-mediated EC dysfunction in CPT1AΔEC mice, offering therapeutic opportunities. Thus, QECs use FAO for vasculoprotection against oxidative stress-prone exposure.


Assuntos
Carnitina O-Palmitoiltransferase/metabolismo , Metabolismo Energético , Ácidos Graxos/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , NADP/metabolismo , Receptor Notch1/metabolismo , Animais , Proliferação de Células , Células HEK293 , Homeostase , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Oxirredução , Estresse Oxidativo
18.
Nature ; 561(7721): 63-69, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30158707

RESUMO

Glutamine synthetase, encoded by the gene GLUL, is an enzyme that converts glutamate and ammonia to glutamine. It is expressed by endothelial cells, but surprisingly shows negligible glutamine-synthesizing activity in these cells at physiological glutamine levels. Here we show in mice that genetic deletion of Glul in endothelial cells impairs vessel sprouting during vascular development, whereas pharmacological blockade of glutamine synthetase suppresses angiogenesis in ocular and inflammatory skin disease while only minimally affecting healthy adult quiescent endothelial cells. This relies on the inhibition of endothelial cell migration but not proliferation. Mechanistically we show that in human umbilical vein endothelial cells GLUL knockdown reduces membrane localization and activation of the GTPase RHOJ while activating other Rho GTPases and Rho kinase, thereby inducing actin stress fibres and impeding endothelial cell motility. Inhibition of Rho kinase rescues the defect in endothelial cell migration that is induced by GLUL knockdown. Notably, glutamine synthetase palmitoylates itself and interacts with RHOJ to sustain RHOJ palmitoylation, membrane localization and activation. These findings reveal that, in addition to the known formation of glutamine, the enzyme glutamine synthetase shows unknown activity in endothelial cell migration during pathological angiogenesis through RHOJ palmitoylation.


Assuntos
Células Endoteliais/enzimologia , Células Endoteliais/patologia , Glutamato-Amônia Ligase/metabolismo , Glutamina/biossíntese , Neovascularização Patológica , Actinas/metabolismo , Animais , Movimento Celular , Células Endoteliais/metabolismo , Feminino , Glutamato-Amônia Ligase/deficiência , Glutamato-Amônia Ligase/genética , Glutamato-Amônia Ligase/fisiologia , Células HEK293 , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/enzimologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Lipoilação , Camundongos , Ácido Palmítico/metabolismo , Processamento de Proteína Pós-Traducional , Fibras de Estresse/metabolismo , Proteínas rho de Ligação ao GTP/química , Proteínas rho de Ligação ao GTP/metabolismo , Quinases Associadas a rho/metabolismo
19.
Cell Metab ; 28(4): 573-587.e13, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30017355

RESUMO

The role of phosphoglycerate dehydrogenase (PHGDH), a key enzyme of the serine synthesis pathway (SSP), in endothelial cells (ECs) remains poorly characterized. We report that mouse neonates with EC-specific PHGDH deficiency suffer lethal vascular defects within days of gene inactivation, due to reduced EC proliferation and survival. In addition to nucleotide synthesis impairment, PHGDH knockdown (PHGDHKD) caused oxidative stress, due not only to decreased glutathione and NADPH synthesis but also to mitochondrial dysfunction. Electron transport chain (ETC) enzyme activities were compromised upon PHGDHKD because of insufficient heme production due to cellular serine depletion, not observed in other cell types. As a result of heme depletion, elevated reactive oxygen species levels caused EC demise. Supplementation of hemin in PHGDHKD ECs restored ETC function and rescued the apoptosis and angiogenesis defects. These data argue that ECs die upon PHGDH inhibition, even without external serine deprivation, illustrating an unusual importance of serine synthesis for ECs.


Assuntos
Células Endoteliais/metabolismo , Heme/metabolismo , Fosfoglicerato Desidrogenase/genética , Fosfoglicerato Desidrogenase/metabolismo , Serina/metabolismo , Apoptose , Erros Inatos do Metabolismo dos Carboidratos/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Suplementos Nutricionais , Técnicas de Silenciamento de Genes , Hemina/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Microcefalia/metabolismo , Mitocôndrias/metabolismo , Mitofagia , Neovascularização Fisiológica , Estresse Oxidativo , Fosfoglicerato Desidrogenase/deficiência , Biossíntese de Proteínas , Transtornos Psicomotores/metabolismo , Purinas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Convulsões/metabolismo
20.
Dev Comp Immunol ; 79: 186-194, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29102705

RESUMO

White spot syndrome virus (WSSV) is a lethal pathogen of shrimp and many other crustaceans, which has been causing huge economic losses in global aquaculture. Laminin receptor (LR) is a cell surface receptor which participates in the interactions between cells as well as cells and extracellular matrix. Previously, we found that a CqLR-like gene was responsive to WSSV infection in the hematopoietic tissue (Hpt) cells from red claw crayfish Cherax quadricarinatus. To further reveal the role of CqLR-like gene involved in WSSV infection, the full-length cDNA of CqLR-like gene was cloned with 1000 bp, and the open reading frame encoded 308 amino acids with a conserved laminin-binding domain. Importantly, both the WSSV entry and viral replication were strongly reduced in Hpt cells after loss-of-function of CqLR-like gene by gene silencing. Protein interaction assay demonstrated that the recombinant CqLR-like protein could bind to WSSV virion in vitro by enzyme-linked immunosorbent assay and the binding affinity was in a dose-dependent manner. Furthermore, recombinant CqLR-like protein was found to bind to WSSV envelop protein VP28, but not other envelop proteins tested including VP19, VP24, and VP26, by pull down assay in HEK293T cells. In regarding to that LR is mainly localized on many types of cells' membrane, these data together suggested that CqLR-like protein was likely to function as a putative recognition molecule towards WSSV and act in the viral entry into a crustacean host cell, which may benefit the elucidation of the WSSV pathogenesis and further the pharmaceutical target for the possibly effective control of WSSV disease.


Assuntos
Astacoidea/imunologia , Infecções por Vírus de DNA/imunologia , Receptores de Laminina/genética , Proteínas do Envelope Viral/metabolismo , Vírus da Síndrome da Mancha Branca 1/fisiologia , Animais , Clonagem Molecular , Células HEK293 , Humanos , Terapia de Alvo Molecular , Ligação Proteica , RNA Interferente Pequeno/genética , Internalização do Vírus , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...