Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 665: 100-108, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38518422

RESUMO

Construction of inorganic/organic heterostructures has been proven to be a very promising strategy to design highly efficient photocatalysts for solar driven hydrogen evolution from water. Herein, we report the preparation of a direct Z-scheme heterojunction photocatalyst by in situ growth of cadmium sulfide on a triazine-based covalent organic framework (COF). The triazine based-COF was synthesized by condensation reaction of precursors 1,3,5-tris-(4-formyl-phenyl) triazine (TFPT) and 2,5-bis-(3-hydroxypropoxy) terephthalohydrazide (DHTH), termed as TFPT-DHTH-COF. Widely distributed nitrogen atoms throughout TFPT-DHTH-COF skeletons serve as anchoring sites for strong interfacial interactions with CdS. The CdS/TFPT-DHTH-COF composite showed a hydrogen evolution rate of 15.75 mmol h-1 g-1, which is about 75 times higher than that of TFPT-DHTH-COF (0.21 mmol h-1 g-1) and 3.4 times higher than that of CdS (4.57 mmol h-1 g-1). With the properly staggered band alignment and strong interfacial interaction between TFPT-DHTH-COF and CdS, a Z-scheme charge transfer pathway is achieved. The mechanism has been systematically analyzed by steady state and time-resolved photoluminescence measurements as well as in situ irradiated X-ray photoelectron spectroscopy.

2.
Nat Commun ; 12(1): 1354, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33649344

RESUMO

Covalent organic frameworks have recently gained increasing attention in photocatalytic hydrogen generation from water. However, their structure-property-activity relationship, which should be beneficial for the structural design, is still far-away explored. Herein, we report the designed synthesis of four isostructural porphyrinic two-dimensional covalent organic frameworks (MPor-DETH-COF, M = H2, Co, Ni, Zn) and their photocatalytic activity in hydrogen generation. Our results clearly show that all four covalent organic frameworks adopt AA stacking structures, with high crystallinity and large surface area. Interestingly, the incorporation of different transition metals into the porphyrin rings can rationally tune the photocatalytic hydrogen evolution rate of corresponding covalent organic frameworks, with the order of CoPor-DETH-COF < H2Por-DETH-COF < NiPor-DETH-COF < ZnPor-DETH-COF. Based on the detailed experiments and calculations, this tunable performance can be mainly explained by their tailored charge-carrier dynamics via molecular engineering. This study not only represents a simple and effective way for efficient tuning of the photocatalytic hydrogen evolution activities of covalent organic frameworks at molecular level, but also provides valuable insight on the structure design of covalent organic frameworks for better photocatalysis.

3.
Curr Pharm Des ; 27(7): 911-918, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33438533

RESUMO

Adverse drug events have been a long-standing concern for the wide-ranging harms to public health, and the substantial disease burden. The key to diminish or eliminate the impacts is to build a comprehensive pharmacovigilance system. Application of the "big data" approach has been proved to assist the detection of adverse drug events by involving previously unavailable data sources and promoting health information exchange. Even though challenges and potential risks still remain. The lack of effective privacy-preserving measures in the flow of medical data is the most important Accepted: one, where urgent actions are required to prevent the threats and facilitate the construction of pharmacovigilance systems. Several privacy protection methods are reviewed in this article, which may be helpful to break the barrier.


Assuntos
Preparações Farmacêuticas , Privacidade , Big Data , Humanos , Disseminação de Informação
4.
Angew Chem Int Ed Engl ; 59(23): 9088-9093, 2020 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-32162747

RESUMO

2D covalent organic frameworks (COFs) are receiving ongoing attention in semiconductor photocatalysis. Herein, we present a photocatalytic selective chemical transformation by combining sp2 carbon-conjugated porphyrin-based covalent organic framework (Por-sp2 c-COF) photocatalysis with TEMPO catalysis illuminated by 623 nm red light-emitting diodes (LEDs). Highly selective conversion of amines into imines was swiftly afforded in minutes. Specifically, the π-conjugation of porphyrin linker leads to extensive absorption of red light; the sp2 -C=C- double bonds linkage ensures the stability of Por-sp2 c-COF under high concentrations of amine. Most importantly, we found that crystalline framework of Por-sp2 c-COF is pivotal for cooperative photocatalysis with (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO). This work foreshadows that the outstanding hallmarks of COFs, particularly crystallinity, could be exploited to address energy and environmental challenges by cooperative photocatalysis.

5.
Angew Chem Int Ed Engl ; 58(19): 6430-6434, 2019 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-30884054

RESUMO

The construction of stable covalent organic frameworks (COFs) for various applications is highly desirable. Herein, we report the synthesis of a novel two-dimensional (2D) porphyrin-based sp2 carbon-conjugated COF (Por-sp2 c-COF), which adopts an eclipsed AA stacking structure with a Brunauer-Emmett-Teller surface area of 689 m2 g-1 . Owing to the C=C linkages, Por-sp2 c-COF shows a high chemical stability under various conditions, even under harsh conditions such as 9 m HCl and 9 m NaOH solutions. Interestingly, Por-sp2 c-COF can be used as a metal-free heterogeneous photocatalyst for the visible-light-induced aerobic oxidation of amines to imines. More importantly, in comparison to imine-linked Por-COF, the inherent structure of Por-sp2 c-COF equips it with several advantages as a photocatalyst, including reusability and high photocatalytic performance. This clearly demonstrates that sp2 carbon-linked 2D COFs can provide an interesting platform for heterogeneous photocatalysis.

6.
Nat Commun ; 9(1): 5234, 2018 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-30532031

RESUMO

The design and synthesis of three-dimensional covalent organic frameworks (3D COFs) have still been considered as a big challenge. Here we report the design and synthesis of an AIEgen-based 3D COF (3D-TPE-COF), with a high surface area (1084 m2 g-1). According to powder X-ray diffraction and continuous rotation electron diffraction analyses, 3D-TPE-COF is identified to adopt a seven-fold interpenetrated pts topology. Interestingly, 3D-TPE-COF emits yellow fluorescence upon excitation, with a photoluminescence quantum yield of 20%. Moreover, by simply coating 3D-TPE-COF onto a commercial blue light-emitting diode (LED), a prototype white LED (WLED) under continuously driving without degradation for 1200 h was demonstrated. The present work suggests the possibility of using COF materials for stable WLEDs, which will greatly inspire us to design and synthesize fluorescent 3D COFs and facilitate the development of COF-based WLEDs in future.

7.
Inorg Chem ; 57(4): 2288-2295, 2018 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-29400460

RESUMO

Metal-organic frameworks (MOFs) assembled from linkers of identical length but with different functional groups have gained increasing interests recently. However, it is very challenging for precise control of the ratios of different functionalities. Herein, we reported a stable azide- and alkyne-appended Zr-MOF that can undergo quantitative tandem click reactions on the different functional sites, thus providing a unique platform for quantitative loading of bifunctional moieties. As an added advantage, the same MOF product can be obtained via two independent routes. The method is versatile and can tolerate a wide variety of functional groups, and furthermore, a heterogeneous acid-base MOF organocatalyst was synthesized by tandemly introducing both acidic and basic groups onto the predesigned pore surface. The presented strategy provides a general way toward the construction of bifunctional MOFs with a precise control of ratio of different functionalities for desirable applications in future.

8.
J Am Chem Soc ; 139(25): 8705-8709, 2017 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-28595005

RESUMO

The design and synthesis of three-dimensional covalent organic frameworks (3D COFs) bearing photoelectric units have been considered as a big challenge. Herein, for the first time, we reported the targeted synthesis of two 3D porphyrin-based COFs (3D-Por-COF and 3D-CuPor-COF), starting from tetrahedral (3D-Td) and square (2D-C4) building blocks connected through [4 + 4] imine condensation reactions. On the basis of structural characterizations, 3D-Por-COF and 3D-CuPor-COF are microporous materials with high surface areas, and are proposed to adopt a 2-fold interpenetrated pts topology with Pmc21 space group. Interestingly, both 3D COFs are photosensitive and can be used as heterogeneous catalyst for generating singlet oxygen under photoirradiation. However, 3D-Por-COF shows enhanced photocatalytic activity compared with 3D-CuPor-COF, indicating the properties of 3D porphyrin-based COFs can be tuned by metalation of porphyrin rings. The results reported here will greatly inspire us to design and synthesize 3D COFs bearing other metalloporphyrins for interesting applications (e.g., catalysis) in the future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA