Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Protoc ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654135

RESUMO

Solar-driven photocatalytic reactions offer a promising route to clean and sustainable energy, and the spatial separation of photogenerated charges on the photocatalyst surface is the key to determining photocatalytic efficiency. However, probing the charge-separation properties of photocatalysts is a formidable challenge because of the spatially heterogeneous microstructures, complicated charge-separation mechanisms and lack of sensitivity for detecting the low density of separated photogenerated charges. Recently, we developed surface photovoltage microscopy (SPVM) with high spatial and energy resolution that enables the direct mapping of surface-charge distributions and quantitative assessment of the charge-separation properties of photocatalysts at the nanoscale, potentially providing unprecedented insights into photocatalytic charge-separation processes. Here, this protocol presents detailed procedures that enable researchers to construct the SPVM instruments by integrating Kelvin probe force microscopy with an illumination system and the modulated surface photovoltage (SPV) approach. It then describes in detail how to perform SPVM measurements on actual photocatalyst particles, including sample preparation, tuning of the microscope, adjustment of the illuminated light path, acquisition of SPVM images and measurements of spatially resolved modulated SPV signals. Moreover, the protocol also includes sophisticated data analysis that can guide non-experts in understanding the microscopic charge-separation mechanisms. The measurements are ordinarily performed on photocatalysts with a conducting substrate in gases or vacuum and can be completed in 15 h.

2.
Sci Adv ; 10(11): eadj7867, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38478611

RESUMO

The voltage-gated ion channels, also known as ionic transistors, play substantial roles in biological systems and ion-ion selective separation. However, implementing the ultrafast switchable capabilities and polarity switching of ionic transistors remains a challenge. Here, we report a nanofluidic ionic transistor based on carbon nanotubes, which exhibits an on/off ratio of 104 at operational gate voltage as low as 1 V. By controlling the morphology of carbon nanotubes, both unipolar and ambipolar ionic transistors are realized, and their on/off ratio can be further improved by introducing an Al2O3 dielectric layer. Meanwhile, this ionic transistor enables the polarity switching between p-type and n-type by controlled surface properties of carbon nanotubes. The implementation of constructing ionic circuits based on ionic transistors is demonstrated, which enables the creation of NOT, NAND, and NOR logic gates. The ionic transistors are expected to have profound implications for low-energy consumption computing devices and brain-machine interfacing.

3.
Nat Commun ; 15(1): 1672, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38395923

RESUMO

The practical applications of solar-driven water splitting pivot on significant advances that enable scalable production of robust photoactive films. Here, we propose a proof-of-concept for fabricating robust photoactive films by a particle-implanting technique (PiP) which embeds semiconductor photoabsorbers in the liquid metal. The strong semiconductor/metal interaction enables resulting films efficient collection of photogenerated charges and superior photoactivity. A photoanode of liquid-metal embraced BiVO4 can stably operate over 120 h and retain ~ 70% of activity when scaled from 1 to 64 cm2. Furthermore, a Z-scheme photocatalyst film of liquid-metal embraced BiVO4 and Rh-doped SrTiO3 particles can drive overall water splitting under visible light, delivering an activity 2.9 times higher than that of the control film with gold support and a 110 h stability. These results demonstrate the advantages of the PiP technique in constructing robust and efficient photoactive films for artificial photosynthesis.

4.
Natl Sci Rev ; 10(9): nwad166, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37565210

RESUMO

Understanding how applied voltage drives the electrocatalytic reaction at the nanoscale is a fundamental scientific problem, particularly in non-metallic electrocatalysts, due to their low intrinsic carrier concentration. Herein, using monolayer molybdenum disulfide (MoS2) as a model system of non-metallic catalyst, the potential drops across the basal plane of MoS2 (ΔVsem) and the electric double layer (ΔVedl) are decoupled quantitatively as a function of applied voltage through in-situ surface potential microscopy. We visualize the evolution of the band structure under liquid conditions and clarify the process of EF keeping moving deep into Ec, revealing the formation process of the electrolyte gating effect. Additionally, electron transfer (ET) imaging reveals that the basal plane exhibits high ET activity, consistent with the results of surface potential measurements. The potential-dependent behavior of kf and ns in the ET reaction are further decoupled based on the measurements of ΔVsem and ΔVedl. Comparing the ET and hydrogen evolution reaction imaging results suggests that the low electrocatalytic activity of the basal plane is mainly due to the absence of active sites, rather than its electron transfer ability. This study fills an experimental gap in exploring driving forces for electrocatalysis at the nanoscale and addresses the long-standing issue of the inability to decouple charge transfer from catalytic processes.

5.
J Am Chem Soc ; 145(30): 16852-16861, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37466142

RESUMO

The inert C(sp3)-H bond and easy overoxidation of toluene make the selective oxidation of toluene to benzaldehyde a great challenge. Herein, we present that a photocatalyst, constructed with a small amount (1 mol %) of amorphous BiOCl nanosheets assembled on TiO2 (denoted as 0.01BOC/TiO2), shows excellent performance in toluene oxidation to benzaldehyde, with 85% selectivity at 10% conversion, and the benzaldehyde formation rate is up to 1.7 mmol g-1 h-1, which is 5.6 and 3.7 times that of bare TiO2 and BOC, respectively. In addition to the charge separation function of the BOC/TiO2 heterojunction, we found that the amorphous structure of BOC endows its abundant surface oxygen vacancies (Ov), which can further promote the charge separation. Most importantly, the surface Ov of amorphous BOC can efficiently adsorb and activate O2, and amorphous BOC makes the product, benzaldehyde, easily desorb from the catalyst surface, which alleviates the further oxidation of benzaldehyde, and results in the high selectivity. This work highlights the importance of the microstructure based on heterojunctions, which is conducive to the rational design of photocatalysts with high performance in organic synthesis.

6.
Adv Sci (Weinh) ; 10(23): e2302206, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37259627

RESUMO

Aurivillius-type compounds ((Bi2 O2 )2+ (An -1 Bn O3 n +1 )2- ) with alternately stacked layers of bismuth oxide (Bi2 O2 )2+ and perovskite (An -1 Bn O3 n +1 )2- are promising photocatalysts for overall water splitting due to their suitable band structures and adjustable layered characteristics. However, the self-reduction of Bi3+ at the top (Bi2 O2 )2+ layers induced by photogenerated electrons during photocatalytic processes causes inactivation of the compounds as photocatalysts. Here, using Bi3 TiNbO9 as a model photocatalyst, its surface termination is modulated by acid etching, which well suppresses the self-corrosion phenomenon. A combination of comprehensive experimental investigations together with theoretical calculations reveals the transition of the material surface from the self-reduction-sensitive (Bi2 O2 )2+ layer to the robust (BiTiNbO7 )2- perovskite layer, enabling effective electron transfer through surface trapping and effective hole transfer through surface electric field, and also efficient transfer of the electrons to the cocatalyst for greatly enhanced photocatalytic overall water splitting. Moreover, this facile modification strategy can be readily extended to other Aurivillius compounds (e.g., SrBi2 Nb2 O9 , Bi4 Ti3 O12 , and SrBi4 Ti4 O15 ) and therefore justify its usefulness in rationally tailoring surface structures of layered photocatalysts for high photocatalytic overall water-splitting activity and stability.

7.
Angew Chem Int Ed Engl ; 62(21): e202302575, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36959093

RESUMO

The interfacial barrier of charge transfer from semiconductors to cocatalysts means that the photogenerated charges cannot be fully utilized, especially for the challenging water oxidation reaction. Using cobalt cubane molecules (Co4 O4 ) as water oxidation cocatalysts, we rationally assembled partially oxidized graphene (pGO), acting as a charge-transfer mediator, on the hole-accumulating {-101} facets of lead chromate (PbCrO4 ) crystal. The assembled pGO enables preferable immobilization of Co4 O4 molecules on the {-101} facets of the PbCrO4 crystal, which is favorable for the photogenerated holes transferring from PbCrO4 to Co4 O4 molecules. The surface charge-transfer efficiency of PbCrO4 was boosted by selective assembly of pGO between PbCrO4 and Co4 O4 molecules. An apparent quantum efficiency for photocatalytic water oxidation on the Co4 O4 /pGO/PbCrO4 photocatalyst exceeded 10 % at 500 nm. This strategy of rationally assembling charge-transfer mediator provides a feasible method for acceleration of charge transfer and utilization in semiconductor photocatalysis.

8.
J Am Chem Soc ; 145(8): 4667-4674, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36795953

RESUMO

Charge transfer at the semiconductor/solution interface is fundamental to photoelectrocatalytic water splitting. Although insights into charge transfer in the electrocatalytic process can be gained from the phenomenological Butler-Volmer theory, there is limited understanding of interfacial charge transfer in the photoelectrocatalytic process, which involves intricate effects of light, bias, and catalysis. Here, using operando surface potential measurements, we decouple the charge transfer and surface reaction processes and find that the surface reaction enhances the photovoltage via a reaction-related photoinduced charge transfer regime as demonstrated on a SrTiO3 photoanode. We show that the reaction-related charge transfer induces a change in the surface potential that is linearly correlated to the interfacial charge transfer rate of water oxidation. The linear behavior is independent of the applied bias and light intensity and reveals a general rule for interfacial transfer of photogenerated minority carriers. We anticipate the linear rule to be a phenomenological theory for describing interfacial charge transfer in photoelectrocatalysis.

9.
Nature ; 610(7931): 296-301, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36224420

RESUMO

The water-splitting reaction using photocatalyst particles is a promising route for solar fuel production1-4. Photo-induced charge transfer from a photocatalyst to catalytic surface sites is key in ensuring photocatalytic efficiency5; however, it is challenging to understand this process, which spans a wide spatiotemporal range from nanometres to micrometres and from femtoseconds to seconds6-8. Although the steady-state charge distribution on single photocatalyst particles has been mapped by microscopic techniques9-11, and the charge transfer dynamics in photocatalyst aggregations have been revealed by time-resolved spectroscopy12,13, spatiotemporally evolving charge transfer processes in single photocatalyst particles cannot be tracked, and their exact mechanism is unknown. Here we perform spatiotemporally resolved surface photovoltage measurements on cuprous oxide photocatalyst particles to map holistic charge transfer processes on the femtosecond to second timescale at the single-particle level. We find that photogenerated electrons are transferred to the catalytic surface quasi-ballistically through inter-facet hot electron transfer on a subpicosecond timescale, whereas photogenerated holes are transferred to a spatially separated surface and stabilized through selective trapping on a microsecond timescale. We demonstrate that these ultrafast-hot-electron-transfer and anisotropic-trapping regimes, which challenge the classical perception of a drift-diffusion model, contribute to the efficient charge separation in photocatalysis and improve photocatalytic performance. We anticipate that our findings will be used to illustrate the universality of other photoelectronic devices and facilitate the rational design of photocatalysts.

10.
Nat Commun ; 13(1): 4245, 2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35869136

RESUMO

Ferroelectrics are considered excellent photocatalytic candidates for solar fuel production because of the unidirectional charge separation and above-gap photovoltage. Nevertheless, the performance of ferroelectric photocatalysts is often moderate. A few studies showed that these types of photocatalysts could achieve overall water splitting. This paper proposes an approach to fabricating interfacial charge-collecting nanostructures on positive and negative domains of ferroelectric, enabling water splitting in ferroelectric photocatalysts. The present study observes efficient accumulations of photogenerated electrons and holes within their thermalization length (~50 nm) around Au nanoparticles located in the positive and negative domains of a BaTiO3 single crystal. Photocatalytic overall water splitting is observed on a ferroelectric BaTiO3 single crystal after assembling oxidation and reduction cocatalysts on the positively and negatively charged Au nanoparticles, respectively. The fabrication of bipolar charge-collecting structures on ferroelectrics to achieve overall water splitting offers a way to utilize the energetic photogenerated charges in solar energy conversion.

11.
Angew Chem Int Ed Engl ; 61(37): e202207161, 2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-35716112

RESUMO

A crucial issue in artificial photosynthesis is how to modulate the behaviors of photogenerated charges of semiconductor photocatalysts. Here, using lead chromate (PbCrO4 ) as an example, we conducted the morphology tailoring from parallelepiped (p-PbCrO4 ) to truncated decahedron (t-PbCrO4 ) and elongated rhombic (r-PbCrO4 ), resulting in exposed anisotropic facets. The spatial separation of photogenerated charges closely correlates to the anisotropic facets of crystals, which can only be realized for t-PbCrO4 and r-PbCrO4 . The charge-separation efficiencies exhibit a quasilinear relation with the surface photovoltage difference between anisotropic facets. The r-PbCrO4 gives an apparent quantum efficiency of 6.5 % at 500 nm for photocatalytic water oxidation using Fe3+ ions as electron acceptors. Moreover, the oxidation reverse reaction from Fe2+ to Fe3+ ions was completely blocked with ∼100 % of Fe3+ conversion achieved on the anisotropic PbCrO4 crystals.

12.
J Phys Chem Lett ; 13(19): 4244-4250, 2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35522045

RESUMO

Phase junctions of photocatalysts can promote the separation of photogenerated charge carriers for efficient utilization of the carriers. Construction of phase junctions and establishing their structure-performance relationship are still required. Herein, polycrystalline TiO2 decahedral plates with different phases were synthesized by thermal treatment-induced topotactic transition of titanium oxalate crystals. The phase of TiO2 evolved from pure anatase to anatase-brookite, anatase-brookite-rutile, and then to anatase-rutile, while the morphology of the decahedral plates was well maintained. The biphase anatase-brookite was found to be most efficient in photocatalytic hydrogen generation. Specifically, the hydrogen generation rate of the biphase anatase-brookite TiO2 was nearly 2.4 times greater than that of the biphase anatase-rutile TiO2. The spatially resolved surface photovoltage measurements indicate the more efficient separation of photogenerated charge carriers and thus greater photocatalytic activity of the former. This work provides a strategy for developing efficient phase-junction photocatalysts.

13.
Angew Chem Int Ed Engl ; 61(16): e202117567, 2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35100475

RESUMO

The photocatalytic conversion of solar energy offers a potential route to renewable energy, and its efficiency relies on effective charge separation in nanostructured photocatalysts. Understanding the charge-separation mechanism is key to improving the photocatalytic performance and this has now been enabled by advances in the spatially resolved surface photovoltage (SRSPV) method. In this Review we highlight progress made by SRSPV in mapping charge distributions at the nanoscale and determining the driving forces of charge separation in heterogeneous photocatalyst particles. We discuss how charge separation arising from a built-in electric field, diffusion, and trapping can be exploited and optimized through photocatalyst design. We also highlight the importance of asymmetric engineering of photocatalysts for effective charge separation. Finally, we provide an outlook on further opportunities that arise from leveraging these insights to guide the rational design of photocatalysts and advance the imaging technique to expand the knowledge of charge separation.

14.
J Phys Chem Lett ; 12(44): 10829-10836, 2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34726399

RESUMO

Understanding the role of surface charges in the catalytic reaction is of great importance to fundamental science in photoelectrochemistry (PEC). However, spatial heterogeneities of charge transfer sites and catalytic sites at the electrode/electrolyte interface obscures the surface reaction process. Herein, we quantified the relationship between the local catalytic current of the hydrogen evolution reaction (HER) and the surface charge density using operando spatially resolved photovoltage microscopy on the Pt/Ti array on the p-Si photoelectrode. We found that the Pt/Ti islands on the p-Si surface worked as the main charge collect areas but as the sole catalytic sites to drive the PEC hydrogen evolution. Based on the achievements of identifying the local photocurrent and photovoltage on a single Pt/Ti island, we found that the local HER current can be linearly regulated by the charge density at reactive sites by concurrently adjusting the bias potential and the spacings of the Pt/Ti islands. These results emphasize the significant impact of the surface charge density on the catalytic activity in photoelectrochemistry.

15.
Natl Sci Rev ; 8(6): nwaa151, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34691655

RESUMO

A key issue for redox reactions in plasmon-induced photocatalysis, particularly for water oxidation, is the concentration of surface-accumulating charges (electrons or holes) at a reaction site for artificial photosynthesis. However, where plasmonic charge accumulated at a catalyst's surface, and how to improve local charge density at active sites, remains unknown because it is difficult to identify the exact spatial location and local density of the plasmon-induced charge, particularly with regard to holes. Herein, we show that at the single particle level, plasmon-coupling-induced holes can be greatly accumulated at the plasmonic Au nanoparticle dimer/TiO2 interface in the nanogap region, as directly evidenced by the locally enhanced surface photovoltage. Such an accumulation of plasmonic holes can significantly accelerate the water oxidation reaction (multi-holes involved) at the interfacial reaction site, with nearly one order of magnitude enhancement in photocatalytic activities compared to those of highly dispersed Au nanoparticles on TiO2. Combining Kelvin probe force microscopy and theoretical simulation, we further clarified that the local accumulated hole density is proportional to the square of the local near-field enhancement. Our findings advance the understanding of how charges spatially distribute in plasmonic systems and the specific role that local charge density at reaction sites plays in plasmonic photocatalysis.

16.
Natl Sci Rev ; 8(8): nwaa231, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34691706

RESUMO

Light-driven ion (proton) transport is a crucial process both for photosynthesis of green plants and solar energy harvesting of some archaea. Here, we describe use of a TiO2/C3N4 semiconductor heterojunction nanotube membrane to realize similar light-driven directional ion transport performance to that of biological systems. This heterojunction system can be fabricated by two simple deposition steps. Under unilateral illumination, the TiO2/C3N4 heterojunction nanotube membrane can generate a photocurrent of about 9 µA/cm2, corresponding to a pumping stream of ∼5500 ions per second per nanotube. By changing the position of TiO2 and C3N4, a reverse equivalent ionic current can also be realized. Directional transport of photogenerated electrons and holes results in a transmembrane potential, which is the basis of the light-driven ion transport phenomenon. As a proof of concept, we also show that this system can be used for enhanced osmotic energy generation. The artificial light-driven ion transport system proposed here offers a further step forward on the roadmap for development of ionic photoelectric conversion and integration into other applications, for example water desalination.

17.
Nano Lett ; 21(20): 8901-8909, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34647747

RESUMO

The involvement between electron transfer (ET) and catalytic reaction at the electrocatalyst surface makes the electrochemical process challenging to understand and control. Even ET process, a primary step, is still ambiguous because it is unclear how the ET process is related to the nanostructured electrocatalyst. Herein, locally enhanced ET current dominated by mass transport effect at corner and edge sites bounded by {111} facets on single Au triangular nanoplates was clearly imaged. After decoupling mass transport effect, the ET rate constant of corner sites was measured to be about 2-fold that of basal {111} plane. Further, we demonstrated that spatial heterogeneity of local inner potential differences of Au nanoplates/solution interfaces plays a key role in the ET process, supported by the linear correlation between the logarithm of rate constants and the potential differences of different sites. These results provide direct images for heterogeneous ET, which helps to understand and control the nanoscopic electrochemical process and electrode design.

18.
Small ; 17(49): e2103224, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34611983

RESUMO

Photocatalysis offers a sustainable strategy for hydrogen peroxide (H2 O2 ) production, which is an essential oxidant and emerging energy carrier in modern chemical industry. The development of polymer-based photocatalysts to produce H2 O2 has great potential but is limited by lower efficiency due to the limitation of light utilization and the low charge separation efficiency. Herein, a series of monodispersed mesoporous resorcinol-formaldehyde resin spheres (MRFS) are reported with a rational designed spatial charge distribution, exhibiting wide light absorption with a solar-to-chemical conversion (SCC) efficiency of 1.1%. Surface photovoltage microscopy (SPVM) measurements unraveled the charge separation in nanospace with uneven distribution of donor (D) and acceptor (A) sites. A density functional theory (DFT) calculation elucidated the origin of photogenerated electrons and holes. Moreover, MRFS demonstrates photocatalytic water oxidation ability. The findings in this work open a new avenue for the development of porous polymeric photocatalysts toward highly efficient solar energy conversion.

20.
Adv Mater ; 32(7): e1906513, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31943380

RESUMO

Ferroelectric materials with spontaneous polarization-induced internal electric fields have drawn increasing attention in solar fuel production due to the intrinsic polarized structure. However, the origination of charge separation in these materials at the nano/microlevel is ambiguous owing to the complexity of the multielectric fields. Besides, the observed charge separation ability is far from theoretical expectation. Herein, by spatially resolved surface photovoltage spectroscopy, it is clearly demonstrated that the depolarization field in single-domain ferroelectric PbTiO3 (PTO) nanoplates is the main driving force for charge separation and it can effectively drive photogenerated electrons and holes to the positive and negative polarization facets, respectively. Moreover, the charge separation ability of PTO nanoplates increases with increasing particle size along the polarization direction, due to the increasing potential difference between the opposite polarization facets. Furthermore, this driving force for charge separation directly contributes to the enhancement of the photocatalytic hydrogen evolution reaction activity in ferroelectrics. Finally, it is proved that the screening field compensates part of the depolarization field and can be diminished by adding a dielectric layer on the ferroelectric surface. These findings demonstrate the importance of increasing the depolarization field and decreasing the screening field for efficient charge separation in ferroelectric semiconductor photocatalysts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...