Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 128: 110240, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32480217

RESUMO

BACKGROUND: Allicin, the principle active constituent in garlic, has been reported to have antihypertensive effects on drug-induced hypertension or renal hypertension in rats, but reports on spontaneously hypertensive rats (SHRs) are rare. Allicin is comprised of a variety of sulfur-containing compounds, and hydrogen sulfide (H2S) has been shown to have specific vasomotor effects. We therefore hypothesize that allicin may exert a vasorelaxant activity by inducing H2S production, and this eventually result in a reduction in blood pressure in SHRs. METHODS: The in vivo antihypertensive effect of allicin was assessed using a tail-cuff method on SHRs. The in vitro vasorelaxant effect and in-depth mechanisms of allicin were explored on rat mesenteric arterial rings (RMARs) isolated from SD rats. RESULTS: In the in vivo study, administration of allicin (7 mg/kg and 14 mg/kg, 4 weeks, i.g) dramatically decreased the blood pressure in SHRs, which was also shown to be attenuated by H2S synthase inhibitor (PAG, 32 mg/kg, i.g). In in vitro studies, allicin (2.50-15.77 mM) produced a concentration-dependent vasorelaxation on RMARs, which was obviously reduced by preincubation with PAG. The removal of endothelium led to a decline in allicin's vasorelaxation, which was almost completely mitigated when treatment was followed with PAG. Inhibitors of nitric oxide (NO) and prostaglandin (PGI2) pathways separately suppressed the vasorelaxation induced by allicin to a certain degree. When the RMARs incubated with PAG were treated with or without the above inhibitors in separate groups, the relaxations caused by allicin were almost identical under both these conditions. Moreover, allicin treatment increased cyclic guanosine monophosphate (cGMP) and cyclic adenosine monophosphate (cAMP) levels (downstream products of NO and PGI2 pathways), which was decreased by PAG. Additionally, allicin increased the acetylcholine-induced endothelium-derived hyperpolarizing factor (EDHF) -mediated relaxation, which was unaffected by PAG. CONCLUSION: Allicin exhibits a potent antihypertensive effect through vasodilatory properties and H2S mechanisms. Moreover, the vasodilation of allicin is partially dependent on endothelium. The endothelium-dependent vasodilation of allicin is mediated by the NO-sGC-cGMP, PGI2-AC-cAMP and EDHF pathways, of which H2S participates in the first two but not the third one. The endothelium independent vasodilation can be predominantly attributed to H2S production.


Assuntos
Anti-Hipertensivos/farmacologia , Pressão Arterial/efeitos dos fármacos , Sulfeto de Hidrogênio/metabolismo , Hipertensão/tratamento farmacológico , Artérias Mesentéricas/efeitos dos fármacos , Ácidos Sulfínicos/farmacologia , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia , Animais , Modelos Animais de Doenças , Dissulfetos , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Masculino , Artérias Mesentéricas/metabolismo , Artérias Mesentéricas/fisiopatologia , Ratos Endogâmicos SHR , Ratos Sprague-Dawley
2.
Artigo em Inglês | MEDLINE | ID: mdl-29849702

RESUMO

Allicin (2-propene-1-sulfinothioic acid S-2-propenyl ester, diallyl thiosulfinate) is the main biologically active ingredient in garlic. The present study investigated the protective effect of allicin against cardiomyocyte apoptosis that was induced by ischemia in vitro and the potential molecular mechanisms that were involved in this antiapoptotic effect. The results indicated that allicin increased H9c2 cell activity and attenuated the rate of apoptosis that was induced by ischemia/hypoxia. Intracellular calcium concentrations significantly decreased in the allicin-treated groups. Bax expression significantly decreased, and Bcl-2 expression increased in allicin-treated rats. Nitric oxide blockade significantly inhibited these effects. Allicin also increased the activity of SOD and NO release and decreased MDA levels. Allicin significantly increased the expression of eNOS, Nrf2, and HO-1 proteins. Collectively, these findings demonstrate that allicin protects H9c2 cells against apoptosis, and this protective effect appears to occur via eNOS/NO pathway-mediated antioxidant activity.

3.
ChemMedChem ; 9(4): 706-9, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24436249

RESUMO

Caffeic acid phenethyl ester (CAPE), the major bioactive component of honeybee propolis, is a potent selective inhibitor of aldo-keto reductase family member 1B10 (AKR1B10), and a number of derivatives hold promise as potential anticancer agents. However, sequence homology between AKR1B10 and other members of the superfamily, including critical phase I metabolizing enzymes, has resulted in a concern over the selectivity of any potential therapeutic agent. To elucidate the binding mode of CAPE with AKR1B10 and to provide a tool for future in silico efforts towards identifying selective inhibitors, the crystal structure of AKR1B10 in complex with CAPE was determined. The observed interactions provide an explanation for the selectivity exhibited by CAPE for AKR1B10, and could be used to guide further derivative design.


Assuntos
Aldeído Redutase/antagonistas & inibidores , Ácidos Cafeicos/farmacologia , Inibidores Enzimáticos/farmacologia , Álcool Feniletílico/análogos & derivados , Aldeído Redutase/metabolismo , Aldo-Ceto Redutases , Ácidos Cafeicos/síntese química , Ácidos Cafeicos/química , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Modelos Moleculares , Estrutura Molecular , Álcool Feniletílico/síntese química , Álcool Feniletílico/química , Álcool Feniletílico/farmacologia , Relação Estrutura-Atividade
4.
FEBS Lett ; 587(22): 3681-6, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24100137

RESUMO

The antineoplastic target aldo-keto reductase family member 1B10 (AKR1B10) and the critical polyol pathway enzyme aldose reductase (AKR1B1) share high structural similarity. Crystal structures reported here reveal a surprising Trp112 native conformation stabilized by a specific Gln114-centered hydrogen bond network in the AKR1B10 holoenzyme, and suggest that AKR1B1 inhibitors could retain their binding affinities toward AKR1B10 by inducing Trp112 flip to result in an "AKR1B1-like" active site in AKR1B10, while selective AKR1B10 inhibitors can take advantage of the broader active site of AKR1B10 provided by the native Trp112 side-chain orientation.


Assuntos
Aldeído Redutase/química , Triptofano/química , Aldeído Redutase/antagonistas & inibidores , Aldo-Ceto Redutases , Benzotiazóis/química , Domínio Catalítico , Cristalografia por Raios X , Inibidores Enzimáticos/química , Ácido Flufenâmico/química , Ligação de Hidrogênio , Imidazolidinas/química , Modelos Moleculares , Naftalenos/química , Ácido Oleanólico/química , Ftalazinas/química , Ligação Proteica , Estrutura Secundária de Proteína , Rodanina/análogos & derivados , Rodanina/química , Homologia Estrutural de Proteína , Tiazolidinas/química
5.
Biochim Biophys Acta ; 1834(10): 2089-96, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23871879

RESUMO

The phosphodiesterase-4 (PDE4) enzyme is a promising therapeutic target for several diseases. Our previous studies found resveratrol and moracin M to be natural PDE4 inhibitors. In the present study, three natural resveratrol analogs [pterostilbene, (E)-2',3,5',5-tetrahydroxystilbene (THSB), and oxyresveratrol] are structurally related to resveratrol and moracin M, but their inhibition and mechanism against PDE4 are still unclear. A combined method consisting of molecular docking, molecular dynamics (MD) simulations, binding free energy, and bioassay was performed to better understand their inhibitory mechanism. The binding pattern of pterostilbene demonstrates that it involves hydrophobic/aromatic interactions with Phe340 and Phe372, and forms hydrogen bond(s) with His160 and Gln369 in the active site pocket. The present work also reveals that oxyresveratrol and THSB can bind to PDE4D and exhibits less negative predicted binding free energies than pterostilbene, which was qualitatively validated by bioassay (IC50=96.6, 36.1, and 27.0µM, respectively). Additionally, a linear correlation (R(2)=0.953) is achieved for five PDE4D/ligand complexes between the predicted binding free energies and the experimental counterparts approximately estimated from their IC50 values (≈RT ln IC50). Our results imply that hydrophobic/aromatic forces are the primary factors in explaining the mechanism of inhibition by the three products. Results of the study help to understand the inhibitory mechanism of the three natural products, and thus help the discovery of novel PDE4 inhibitors from resveratrol, moracin M, and other natural products.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/química , Inibidores da Fosfodiesterase 4/química , Extratos Vegetais/química , Estilbenos/química , Sítios de Ligação , Bioensaio , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4 , Humanos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Cinética , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Extratos Vegetais/isolamento & purificação , Ligação Proteica , Estrutura Terciária de Proteína , Resveratrol , Estilbenos/isolamento & purificação , Relação Estrutura-Atividade , Termodinâmica
6.
Artigo em Inglês | MEDLINE | ID: mdl-22750860

RESUMO

Feruloyl esterase cleaves the ester linkage formed between ferulic acid and polysaccharides in plant cell walls and thus has wide potential industrial applications. A novel feruloyl esterase (EstF27) identified from a soil metagenomic library was crystallized and a complete data set was collected from a single cooled crystal using an in-house X-ray source. The crystal diffracted to 2.9 Šresolution and belonged to space group P2(1)2(1)2(1), with unit-cell parameters a = 94.35, b = 106.19, c = 188.51 Å, α = ß = γ = 90.00°. A Matthews coefficient of 2.55 Å(3) Da(-1), with a corresponding solvent content of 51.84%, suggested the presence of ten protein subunits in the asymmetric unit.


Assuntos
Hidrolases de Éster Carboxílico/química , Cristalização , Cristalografia por Raios X , Metagenômica , Solo
7.
Bioorg Med Chem Lett ; 22(9): 3261-4, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22483586

RESUMO

Phosphodiesterase-4 (PDE4) has been identified to be a promising target for treatment of asthma. Moracin M extracted from Chinese herbal drug 'Sang-Bai-Pi' (Morus alba L.) was studied for the inhibitory affinity towards PDE4. It inhibited PDE4D2, PDE4B2, PDE5A1, and PDE9A2 with the IC(50) values of 2.9, 4.5, >40, and >100 µM, respectively. Our molecular docking and 8ns molecular dynamics (MD) simulations demonstrated that moracin M forms three hydrogen bonds with Gln369, Asn321, and Asp318 in the active site and stacks against Phe372. In addition, comparative kinetics analysis of its analog moracin C was carried out to qualitatively validate their inhibitory potency as predicted by the binding free energy calculations after MD simulations.


Assuntos
Benzofuranos/farmacologia , Morus/química , Inibidores da Fosfodiesterase 4/química , Resorcinóis/farmacologia , Simulação por Computador , Medicamentos de Ervas Chinesas , Concentração Inibidora 50 , Cinética , Simulação de Dinâmica Molecular , Inibidores da Fosfodiesterase 4/isolamento & purificação , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...