Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mar Environ Res ; 192: 106233, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37866200

RESUMO

Variations of microbial species and functional composition in coastal sediment are usually taken as the results of the provision of supplementary nutrients affected by human activities. However, responses of microbiome stability to restocking biological resources remain less understood in coastal benthic systems without nutrient supplements. Here, combined with metagenomics and microbiome co-occurrence networks, the composition, function, and community stability of microbes were evaluated in a coastal area where sea cucumbers (Apostichopus japonicus) restocked after six months. Also, the physicochemical characteristics of sediments and bottom water were analyzed. We found the total organic carbon, total nitrogen, and total phosphorus of sediment did not change significantly in the restocking area after six months, whereas the concentration of dissolved inorganic nitrogen in bottom water increased significantly. Moreover, the relative abundance of Nitrospina at the class level was increased significantly in the restocking area. Also, enzymes related to nitrate reduction and nitrous oxide reductase were increased in the restocking area. Of note, stock enhancement of sea cucumbers altered associations between bacteria rather than their composition. The elimination of negative associations and reduction of the potential keystone taxa in the restocking area indicated destabilized bacterial communities. Our work may contribute to elucidating the response of microbial stability to stock enhancement. This finding also suggests that microbial community stability can be considered as an indicator of ecological risk under the influence of stock enhancement.


Assuntos
Microbiota , Pepinos-do-Mar , Animais , Humanos , Sedimentos Geológicos/química , Pepinos-do-Mar/microbiologia , Bactérias , Água , Nitrogênio
2.
Front Neurosci ; 16: 850193, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35527820

RESUMO

In response to external threatening signals, animals evolve a series of defensive behaviors that depend on heightened arousal. It is believed that arousal and defensive behaviors are coordinately regulated by specific neurocircuits in the central nervous system. The ventral tegmental area (VTA) is a key structure located in the ventral midbrain of mice. The activity of VTA glutamatergic neurons has recently been shown to be closely related to sleep-wake behavior. However, the specific role of VTA glutamatergic neurons in sleep-wake regulation, associated physiological functions, and underlying neural circuits remain unclear. In the current study, using an optogenetic approach and synchronous polysomnographic recording, we demonstrated that selective activation of VTA glutamatergic neurons induced immediate transition from sleep to wakefulness and obviously increased the amount of wakefulness in mice. Furthermore, optogenetic activation of VTA glutamatergic neurons induced multiple defensive behaviors, including burrowing, fleeing, avoidance and hiding. Finally, viral-mediated anterograde activation revealed that projections from the VTA to the central nucleus of the amygdala (CeA) mediated the wake- and defense-promoting effects of VTA glutamatergic neurons. Collectively, our results illustrate that the glutamatergic VTA is a key neural substrate regulating wakefulness and defensive behaviors that controls these behaviors through its projection into the CeA. We further discuss the possibility that the glutamatergic VTA-CeA pathway may be involved in psychiatric diseases featuring with excessive defense.

3.
Neuropharmacology ; 208: 108979, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35131297

RESUMO

Defensive behavior, a group of responses that evolved due to threatening stimuli, is crucial for animal survival in the natural environment. For defensive measures to be timely and successful, a high arousal state and immediate sleep-to-wakefulness transition are required. Recently, the glutamatergic basal forebrain (BF) has been implicated in sleep-wake regulation; however, the associated physiological functions and underlying neural circuits remain unknown. Here, using in vivo fiber photometry, we found that BF glutamatergic neuron is activated by various threatening stimuli, including predator odor, looming threat, sound, and tail suspension. Optogenetic activation of BF glutamatergic neurons induced a series of context-dependent defensive behaviors in mice, including escape, fleeing, avoidance, and hiding. Similar to the effects of activated BF glutamatergic cell body, photoactivation of BF glutamatergic terminals in the ventral tegmental area (VTA) strongly drove defensive behaviors in mice. Using synchronous electroencephalogram (EEG)/electromyogram (EMG) recording, we showed that photoactivation of the glutamatergic BF-VTA pathway produced an immediate transition from sleep to wakefulness and significantly increased wakefulness. Collectively, our results clearly demonstrated that the glutamatergic BF is a key neural substrate involved in wakefulness and defensive behaviors, and encodes these behaviors through glutamatergic BF-VTA pathway. Overexcitation of the glutamatergic BF-VTA pathway may be implicated in clinical psychiatric diseases characterized by exaggerated defensive responses, such as autism spectrum disorders.


Assuntos
Prosencéfalo Basal , Vigília , Animais , Prosencéfalo Basal/fisiologia , Eletroencefalografia/métodos , Mesencéfalo , Camundongos , Sono/fisiologia , Vigília/fisiologia
4.
Biol Psychol ; 165: 108194, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34560174

RESUMO

With the deepening of internationalization, the population's mobility has greatly increased, which can impact people's intergroup relationships. The current research examined the hypothesis that residential mobility plays a crucial role in racial in-group bias in empathy (RIBE) with three studies. By manipulating the residential mobility/stability mindset and measuring subjective pain intensity ratings (Study 1) and event-related potentials (ERPs, Study 2) of Chinese adults on painful and neutral expressions of Asian and Caucasian faces, we found that the RIBE in subjective ratings and N1 amplitudes increased and P3 amplitudes decreased in the stability group. Transcranial direct current stimulation (tDCS) manipulation in Study 3 further found that anodal stimulation of the left dorsolateral prefrontal cortex (DLPFC) increased the RIBE of participants with residential stability experience but had no effect on those with residential mobility experience. As residential mobility continues to increase worldwide, we may observe concomitant changes in racial intergroup relationships.


Assuntos
Estimulação Transcraniana por Corrente Contínua , Adulto , Empatia , Potenciais Evocados , Humanos , Dor , Córtex Pré-Frontal
5.
Neuropharmacology ; 180: 108299, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32916145

RESUMO

Predatory hunting is an important approach for animals to obtain valuable nutrition and energy, which critically depends on heightened arousal. Yet the neural substrates underlying predatory hunting remain largely undefined. Here, we report that basal forebrain (BF) GABAergic neurons play an important role in regulating predatory hunting. Our results showed that BF GABAergic neurons were activated during the prey (cricket)-hunting and food feeding in mice. Optogenetic activation of BF GABAergic neurons evoked immediate predatory-like actions to both artificial and natural preys, significantly reducing the attack latency while increasing the attack probability and the number of killed natural prey (crickets). Similar to the effect of activating the soma of BF GABAergic neurons, photoactivation of their terminals in the ventral tegmental area (VTA) also strongly promotes predatory hunting. Moreover, photoactivation of GABAergic BF - VTA pathway significantly increases the intake of various food in mice. By synchronous recording of electroencephalogram and electromyogram, we showed that photoactivation of GABAergic BF - VTA pathway induces instant arousal and maintains long-term wakefulness. In summary, our results clearly demonstrated that the GABAergic BF is a key neural substrate for predatory hunting, and promotes this behavior through GABAergic BF - VTA pathway.


Assuntos
Nível de Alerta/fisiologia , Prosencéfalo Basal/metabolismo , Neurônios GABAérgicos/metabolismo , Comportamento Predatório/fisiologia , Animais , Prosencéfalo Basal/química , Eletroencefalografia/métodos , Neurônios GABAérgicos/química , Gryllidae , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Optogenética/métodos
6.
Eur J Hum Genet ; 18(1): 26-32, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19690585

RESUMO

Primary cutaneous amyloidosis (PCA) is an itchy skin disorder associated with amyloid deposits in the superficial dermis. The disease is relatively common in Southeast Asia and South America. Autosomal dominant PCA has been mapped earlier to 5p13.1-q11.2 and two pathogenic missense mutations in the OSMR gene, which encodes the interleukin-6 family cytokine receptor oncostatin M receptor beta (OSMRbeta), were reported. Here, we investigated 29 Taiwanese pedigrees with PCA and found that 10 had heterozygous missense mutations in OSMR: p.D647V (one family), p.P694L (six families), and p.K697T (three families). The mutation p.P694L was associated with the same haplotype in five of six families and also detected in two sporadic cases of PCA. Of the other 19 pedigrees that lacked OSMR pathology, 8 mapped to the same locus on chromosome 5, which also contains the genes for 3 other interleukin-6 family cytokine receptors, including interleukin-31 receptor A (IL31RA), which can form a heterodimeric receptor with OSMRbeta through interleukin-31 signaling. In one family, we identified a point mutation in the IL31RA gene, c.1562C>T that results in a missense mutation, p.S521F, which is also sited within a fibronectin type III-like repeat domain as observed in the OSMR mutations. PCA is a genetically heterogeneous disorder but our study shows that it can be caused by mutations in two biologically associated cytokine receptor genes located on chromosome 5. The identification of OSMR and IL31RA gene pathology provides an explanation of the high prevalence of PCA in Taiwan as well as new insight into disease pathophysiology.


Assuntos
Alelos , Amiloidose Familiar/genética , Mutação/genética , Subunidade beta de Receptor de Oncostatina M/genética , Filogenia , Receptores de Interleucina/genética , Dermatopatias/genética , Sequência de Bases , Chile , Análise Mutacional de DNA , Ligação Genética , Haplótipos/genética , Humanos , Dados de Sequência Molecular , Proteínas Mutantes/genética , Reprodutibilidade dos Testes , Taiwan
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...