Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(6)2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35336407

RESUMO

In this paper, an analytical solution for a clamped-edge bimorph disk-type piezoelectric transformer with Kirchhoff thin plate theory is proposed. The electromechanical equations for transient motions are first derived, and coupled expressions for mechanical response and voltage output are obtained. For the case of excitation around the first resonant frequency, the resulting equations are further simplified. There are analytical solutions for a mechanical response, voltage, current, and power outputs. According to the analytical model, the output voltage is affected by the inner radius of the input and output electrodes, the radius of the piezoelectric transformer (PT), and the thickness ratio between the lead zirconate titanate (PZT) layer and the substrate. When the inner radius of the input electrode approaches zero (electrode becomes circular shape), it achieves maximum output voltage at the first resonance frequency excitation. On the contrary, when the inner radius of the output electrode approaches zero, the output voltage reaches its minimum value. Voltage ratios remain constant as the disk radius changes, and the first resonance frequency is inversely proportional to the square of the disk radius. The voltage ratio is fixed even with the miniaturization of the PT.

2.
Sensors (Basel) ; 21(1)2020 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-33396872

RESUMO

In this paper, a piezoelectric wave-energy converter (PWEC), consisting of a buoy, a frequency up-conversion mechanism, and a piezoelectric power-generator component, is developed. The frequency up-conversion mechanism consists of a gear train and geared-linkage mechanism, which converted lower frequencies of wave motion into higher frequencies of mechanical motion. The slider had a six-period displacement compared to the wave motion and was used to excite the piezoelectric power-generation component. Therefore, the operating frequency of the piezoelectric power-generation component was six times the frequency of the wave motion. The developed, flexible piezoelectric composite films of the generator component were used to generate electrical voltage. The piezoelectric film was composed of a copper/nickel foil as the substrate, lead-zirconium-titanium (PZT) material as the piezoelectric layer, and silver material as an upper-electrode layer. The sol-gel process was used to fabricate the PZT layer. The developed PWEC was tested in the wave flume at the Tainan Hydraulics Laboratory, Taiwan (THL). The maximum height and the minimum period were set to 100 mm and 1 s, respectively. The maximum voltage of the measured value was 2.8 V. The root-mean-square (RMS) voltage was 824 mV, which was measured through connection to an external 495 kΩ resistive load. The average electric power was 1.37 µW.

3.
Sensors (Basel) ; 14(11): 22099-112, 2014 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-25421736

RESUMO

In this study, we develop a clamped-clamped beam-type piezoelectric vacuum pressure sensing element. The clamped-clamped piezoelectric beam is composed of a PZT layer and a copper substrate. A pair of electrodes is set near each end. An input voltage is applied to a pair of electrodes to vibrate the piezoelectric beam, and the output voltage is measured at the other pair. Because the viscous forces on the piezoelectric beam vary at different air pressures, the vibration of the beam depends on the vacuum pressure. The developed pressure sensor can sense a wide range of pressure, from 6.5 × 10(-6) to 760 Torr. The experimental results showed that the output voltage is inversely proportional to the gas damping ratio, and thus, the vacuum pressure was estimated from the output voltage.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...