Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 12(43): 49006-49011, 2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33064459

RESUMO

Distinguishing a multitude of optical labels is crucial to improving the spatial and temporal resolution of bioimaging. However, current multicolor imaging approaches are limited by the spectral overlap of employed fluorophores. We here discern different instances of a single optical label type through their emission intensity. Such multilevel optical labels are enabled by an optical writing process that permanently modifies their spectral response in a predictable manner and by a separate spectral feature that serves as normalization in the presence of sample variability. The proposed approach was realized by independently controlling the emission properties of highly functionalized fluorescent nanodiamond. Upon laser irradiation, the contribution of the spectral region associated with the N3 color center decreases in a predictable and permanent fashion, while the nitrogen vacancy (NV) emission remains stable. This selective photobleaching of N3 centers was found to originate from a two-photon-assisted dissociation process that results in a 105 higher mobility of photoexcited carriers in N3 centers compared to NV. The resulting write once read many (WORM) memory exhibits multiple distinct memory levels that can be stored and read out with high robustness and reproducibility. The potential of our approach was demonstrated by characterizing markers in HeLa cells with high fidelity, despite the complex emission background. Finally, direct manipulation of label information inside of cells was demonstrated, opening up new routes in advanced bioimaging.


Assuntos
Cor , Corantes Fluorescentes/química , Luminescência , Nanopartículas/química , Nitrogênio/química , Tamanho da Partícula , Propriedades de Superfície
2.
Sci Rep ; 10(1): 14177, 2020 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-32843679

RESUMO

The advent of novel nanostructured materials has enabled wearable and 3D electronics. Unfortunately, their characterization represents new challenges that are not encountered in conventional electronic materials, such as limited mechanical strength, complex morphology and variability of properties. We here demonstrate that force-resolved measurements can overcome these issues and open up routes for new applications. First, the contact resistance to 2D materials was found to be sensitively depending on the contact force and, by optimizing this parameter, reliable contacts could be repeatably formed without damage to the fragile material. Moreover, resistance of three-dimensional surfaces could be investigated with high accuracy in spatial position and signal through a force-feedback scheme. This force-feedback approach furthermore permitted large-scale statistical characterization of mobility and doping of 2D materials in a desktop-sized automatic probing system that fits into glove boxes and vacuum enclosures using easily available and low-cost components. Finally, force-sensitive measurements enable characterization of complex electronic properties with high lateral resolution. To illustrate this ability, the spatial variation of a surface's electrochemical response was investigated by scanning a single electrolyte drop across the sample.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...