Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Mater ; 23(5): 656-663, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38632374

RESUMO

Understanding the factors underpinning device switching times is crucial for the implementation of organic electrochemical transistors in neuromorphic computing, bioelectronics and real-time sensing applications. Existing models of device operation cannot explain the experimental observations that turn-off times are generally much faster than turn-on times in accumulation mode organic electrochemical transistors. Here, using operando optical microscopy, we image the local doping level of the transistor channel and show that turn-on occurs in two stages-propagation of a doping front, followed by uniform doping-while turn-off occurs in one stage. We attribute the faster turn-off to a combination of engineering as well as physical and chemical factors including channel geometry, differences in doping and dedoping kinetics and the phenomena of carrier-density-dependent mobility. We show that ion transport limits the operation speed in our devices. Our study provides insights into the kinetics of organic electrochemical transistors and guidelines for engineering faster organic electrochemical transistors.

2.
J Am Chem Soc ; 146(2): 1435-1446, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38174986

RESUMO

Most currently known n-type conjugated polymers have a semiflexible chain topology, and their charge carrier mobilities are known to peak at modest chain lengths of below 40-60 repeat units. Herein, we show that the field-effect electron mobility of a model n-type conjugated polymer that has a rigid-rod chain topology grows continuously without saturation, even at a chain length exceeding 250 repeat units. We found the mechanism underlying the novel chain length-dependent electron transport to originate from the reduced structural disorder and energetic disorder with the increasing degree of polymerization inherent to the rigid-rod chain topology. Furthermore, we demonstrate a unique chain length-dependent decay of threshold voltage, which is rationalized by decreased trap densities and trap depths with respect to the degree of polymerization. Our findings provide new insights into the role of polymer chain topology in electron transport and demonstrate the promise of rigid-rod chain architectures for the design of future high-mobility conjugated polymers.

4.
J Am Chem Soc ; 145(3): 1866-1876, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36630664

RESUMO

We study the organic electrochemical transistor (OECT) performance of the ladder polymer poly(benzimidazobenzophenanthroline) (BBL) in an attempt to better understand how an apparently hydrophobic side-chain-free polymer is able to operate as an OECT with favorable redox kinetics in an aqueous environment. We examine two BBLs of different molecular masses from different sources. Regardless of molecular mass, both BBLs show significant film swelling during the initial reduction step. By combining electrochemical quartz crystal microbalance gravimetry, in-operando atomic force microscopy, and both ex-situ and in-operando grazing incidence wide-angle X-ray scattering (GIWAXS), we provide a detailed structural picture of the electrochemical charge injection process in BBL in the absence of any hydrophilic side-chains. Compared with ex-situ measurements, in-operando GIWAXS shows both more swelling upon electrochemical doping than has previously been recognized and less contraction upon dedoping. The data show that BBL films undergo an irreversible hydration driven by the initial electrochemical doping cycle with significant water retention and lamellar expansion that persists across subsequent oxidation/reduction cycles. This swelling creates a hydrophilic environment that facilitates the subsequent fast hydrated ion transport in the absence of the hydrophilic side-chains used in many other polymer systems. Due to its rigid ladder backbone and absence of hydrophilic side-chains, the primary BBL water uptake does not significantly degrade the crystalline order, and the original dehydrated, unswelled state can be recovered after drying. The combination of doping induced hydrophilicity and robust crystalline order leads to efficient ionic transport and good stability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...