Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 15(8): 13085-13093, 2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34313105

RESUMO

Strong coupling between light and matter is the foundation of promising quantum photonic devices such as deterministic single photon sources, single atom lasers, and photonic quantum gates, which consist of an atom and a photonic cavity. Unlike atom-based systems, a strong coupling unit based on an emitter-plasmonic nanocavity system has the potential to bring these devices to the microchip scale at ambient conditions. However, efficiently and precisely positioning a single or a few emitters into a plasmonic nanocavity is challenging. In addition, placing a strong coupling unit on a designated substrate location is a demanding task. Here, fluorophore-modified DNA strands are utilized to drive the formation of particle-on-film plasmonic nanocavities and simultaneously integrate the fluorophores into the high field region of the nanocavities. High cavity yield and fluorophore coupling yield are demonstrated. This method is then combined with e-beam lithography to position the strong coupling units on designated locations of a substrate. Furthermore, polariton energy under the detuning of fluorophore embedded nanocavities can fit into a model consisting of three sets of two-level systems, implying vibronic modes may be involved in the strong coupling. Our system makes strong coupling units more practical on the microchip scale and at ambient conditions and provides a stable platform for investigating fluorophore-plasmonic nanocavity interaction.

2.
Opt Lett ; 44(4): 1027-1030, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30768047

RESUMO

Dark-field microscopy is widely used to image micro/nano particles or characterize their optical response (scattering spectrum). If laser excitation is incorporated into the microscope, the microscope can further probe chemical (molecular) properties of these objects through Raman scattering. However, when the size of the particles is comparable to or smaller than the characteristic sizes of the laser beam, the conventional setup using on-axis excitation usually suffers from undesired background signals produced by illuminated substrates below the target particles. Therefore, a crescent laser beam possessing a stable shape along the propagation direction is generated by a pair of shifted axicons and then integrated into a dark-field microscope for large oblique angle (i.e., off-axis) excitation. Under this excitation setup, the contrast between Raman and background fluorescence spectra is enhanced by a factor of 4 for a 1 µm polystyrene particle sitting on a glass slide, compared to the conventional excitation configuration. This off-axis excitation based on the crescent beam integrates dark-field imaging with Raman spectroscopy and improves Raman characterization of micro/nano particles.

3.
Biomed Opt Express ; 9(5): 2142-2153, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29760976

RESUMO

Complete removal of a glioblastoma multiforme (GBM), a highly malignant brain tumor, is challenging due to its infiltrative characteristics. Therefore, utilizing imaging agents such as fluorophores to increase the contrast between GBM and normal cells can help neurosurgeons to locate residual cancer cells during image guided surgery. In this work, Raman tag based labeling and imaging for GBM cells in vitro is described and evaluated. The cell membrane of a GBM adsorbs a substantial amount of functionalized Raman tags through overexpression of the epidermal growth factor receptor (EGFR) and "broadcasts" stronger pre-defined Raman signals than normal cells. The average ratio between Raman signals from a GBM cell and autofluorescence from a normal cell can be up to 15. In addition, the intensity of these images is stable under laser illuminations without suffering from the severe photo-bleaching that usually occurs in fluorescent imaging. Our results show that labeling and imaging GBM cells via robust Raman tags is a viable alternative method to distinguish them from normal cells. This Raman tag based method can be used solely or integrated into an existing fluorescence system to improve the identification of infiltrative glial tumor cells around the boundary, which will further reduce GBM recurrence. In addition, it can also be applied/extended to other types of cancer to improve the effectiveness of image guided surgery.

4.
Opt Express ; 25(20): 24767-24779, 2017 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-29041422

RESUMO

Near-field and far-field optical properties of plasmonic materials can be tailored by coupling the existing structures. However, fabricating 3D coupled structures in the solution by molecular linkers may suffer from low yield, low stability (particle aggregates), long reaction time, complex surface modification or multiple purification steps. In this report, stable 3D plasmonic core-satellite assemblies (CSA) with a ~1 nm interior gap accompanied by high field enhancement (|E/Einc|>200) are formed in a few seconds through a single polyelectrolyte linker layer. In addition, by covalently binding different reporter molecules and core particles, three distinct RamSSan tags based on this CSA backbone are demonstrated and compared with conventional fluorophores in terms of stability. This general assembly method can be applied to any type of colloidal particles carrying stable surface charge, even non-plasmonic nanoparticles. It will facilitate the development of various robust Raman tags for multiplexed biomedical imaging/sensing by efficiently combining constituent particles of differing size/shape/composition. The CSA backbone with an embedded high field not only makes the brightness of Raman tags more comparable to the fluorophores and can also be utilized in the platform of molecule-light quantum strong coupling.

5.
ACS Omega ; 1(4): 613-619, 2016 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-31457150

RESUMO

We investigate the coupling of dipole resonances induced in a heteromaterial system composed of a high-refractive-index nanoparticle and a highly reflective substrate. A broad scattering signal and strong electric near-field enhancement in the near-infrared region are generated by a hybrid Si nanoparticle on a gold-film system under oblique illumination. Dark-field microscopy investigations of the scattering signal measurement reveal the resonance shifts of the dipole mode of silicon nanoparticles on gold films. Further, the scattering signal is enhanced for p-polarized illumination in the near-infrared region. The results indicate that the coupling of Si nanoparticles on a gold-film system facilitates a possible application for both surface-enhanced fluorescence and surface-enhanced Raman scattering.

6.
ACS Nano ; 4(11): 6535-46, 2010 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-21038892

RESUMO

Surface plasmons supported by metal nanoparticles are perturbed by coupling to a surface that is polarizable. Coupling results in enhancement of near fields and may increase the scattering efficiency of radiative modes. In this study, we investigate the Rayleigh and Raman scattering properties of gold nanoparticles functionalized with cyanine deposited on silicon and quartz wafers and on gold thin films. Dark-field scattering images display red shifting of the gold nanoparticle plasmon resonance and doughnut-shaped scattering patterns when particles are deposited on silicon or on a gold film. The imaged radiation patterns and individual particle spectra reveal that the polarizable substrates control both the orientation and brightness of the radiative modes. Comparison with simulation indicates that, in a particle-surface system with a fixed junction width, plasmon band shifts are controlled quantitatively by the permittivity of the wafer or the film. Surface-enhanced resonance Raman scattering (SERRS) spectra and images are collected from cyanine on particles on gold films. SERRS images of the particles on gold films are doughnut-shaped as are their Rayleigh images, indicating that the SERRS is controlled by the polarization of plasmons in the antenna nanostructures. Near-field enhancement and radiative efficiency of the antenna are sufficient to enable Raman scattering cyanines to function as gap field probes. Through collective interpretation of individual particle Rayleigh spectra and spectral simulations, the geometric basis for small observed variations in the wavelength and intensity of plasmon resonant scattering from individual antenna on the three surfaces is explained.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Análise Espectral Raman , Carbocianinas/química , Impedância Elétrica , Semicondutores , Silício/química , Propriedades de Superfície
7.
Nano Lett ; 10(10): 4150-4, 2010 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-20804206

RESUMO

The strongly enhanced and localized optical fields that occur within the gaps between metallic nanostructures can be leveraged for a wide range of functionality in nanophotonic and optical metamaterial applications. Here, we introduce a means of precise control over these nanoscale gaps through the application of a molecular spacer layer that is self-assembled onto a gold film, upon which gold nanoparticles (NPs) are deposited electrostatically. Simulations using a three-dimensional finite element model and measurements from single NPs confirm that the gaps formed by this process, between the NP and the gold film, are highly reproducible transducers of surface-enhanced resonant Raman scattering. With a spacer layer of roughly 1.6 nm, all NPs exhibit a strong Raman signal that decays rapidly as the spacer layer is increased.


Assuntos
Ouro/química , Nanoestruturas/química , Nanotecnologia/métodos , Luz , Nanopartículas/química , Análise Espectral Raman , Eletricidade Estática
8.
Opt Express ; 15(21): 13689-94, 2007 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-19550640

RESUMO

We observe the stabilization of a single-(double-) charge optical vortex propagating in a self-focusing medium. The optical vortex, which carries a phase singularity at its center, usually breaks up in a self-focusing medium due to the so-called azimuthal instability. However, by adding a small rotating azimuthally-periodic intensity modulation on the vortex light beam, which propagates in a noninstantaneous self-focusing medium, we successfully suppress the azimuthal instability. This observation is confirmed by both numerical simulation and perturbational analysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...