Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(16)2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37629920

RESUMO

AlCrTiZrMo high-entropy alloy (HEA) films with strong amorphization were obtained by co-filter cathode vacuum arc deposition, and the effect of thermal shock on the films was investigated in order to explore the protection mechanism of HEA films against mechanical components in extreme service environments. The results show that after annealing at 800 °C for 1 h, the formation of a dense ZrTiO4 composite oxide layer on the surface actively prevents the oxidation from continuing, so that the AlCrTiZrMo HEA film exhibits excellent oxidation resistance at 800 °C in air. In the friction-corrosion coupling environment, the AlCrTiZrMo HEA film annealed at 800 °C for 1 h shows the best tribocorrosion resistance due to the stable dense microstructure and excellent mechanical properties, and its ΔOCP, COF and wear rate possess the smallest values of 0.055, 0.04 and 1.34 × 10-6 mm-3·N-1·m-1.

2.
ACS Appl Mater Interfaces ; 14(18): 21461-21473, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35475345

RESUMO

The polymers that served for solar cell arrays are constantly subject to various hazards, such as atomic oxygen (AO), ion irradiation, or electrostatic discharge (ESD) events. To address these issues, we fabricated and sifted CrO0.16/CuNi-coated Kapton with a gradient structure with the goal of reaching an equilibrium between AO durability and resistance. The resulting material exhibits an impressively low Ey of 6.61 × 10-26 cm3 atom-1, 2.20% of which was detected as pristine Kapton. Self-evolution of the CrO0.16 coating under 525.4 displacement per atom (dpa) Fe+ ion irradiation indicated that it can still maintain a good state of ultrafine nanocrystalline in addition to local amorphization. Its AO-based degradation and irradiation evolution are demonstrated by molecular dynamics (MD) simulations. It is mechanically robust enough to endure the cyclic folding treatments attributed to its gradient structure fabrication. Moreover, the CrO0.16/CuNi-coated Kapton exhibits alleviated electrostatic accumulation capability and sufficient conductivity. Our strategy has promising potential for creating surface protection on flexible polymers operating in the low Earth orbit (LEO).

3.
ACS Appl Mater Interfaces ; 13(48): 58179-58192, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34843215

RESUMO

Polymers used for the exteriors of spacecraft are always exposed to risks such as atomic oxygen (AO) or electrostatic discharge (ESD) degradation. In this work, an AlxTiyO/NiCr coating with excellent mechanical stability, AO durability, and electrostatic dissipative properties was deposited via ion implantation (IIP), filter cathode vacuum arc (FCVA), and high-power impulse magnetron sputtering (HiPIMS) on a flexible Kapton substrate. Scratch and cycle folding tests indicated good adhesion and toughness of the AlxTiyO/NiCr-coated Kapton, which were due to the gradient structure fabricated by the multitechnology combination. AO exposure tests demonstrated an extremely low erosion yield (Ey = 5.15 × 10-26 cm3 atom-1) of the AlxTiyO/NiCr-coated Kapton, only 1.72% of that observed for pristine Kapton. Moreover, Rutherford backscattering spectrometry (RBS) and Kelvin probe force microscopy (KPFM) results showed that the AlxTiyO/NiCr-coated Kapton has elevated surface electrostatic dissipative properties and sufficient conductivity. The multitechnology combination offers great flexibility for customizing the gradient structure to realize a comprehensive performance improvement. In addition, such a coating has great prospects for aerospace applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA