Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(7)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38611242

RESUMO

The design of high-performance polyimide (PI) films and understanding the relationship of the structure-dielectric property are of great significance in the field of the microelectronics industry, but are challenging. Herein, we describe the first work to construct a series of novel tert-butyl PI films (denoted as PI-1, PI-2, PI-3, and PI-4) based on a low-temperature polymerization strategy, which employed tetracarboxylic dianhydride (pyromellitic anhydride, 3,3',4,4'-biphenyl tetracarboxylic anhydride, 4,4'-diphenyl ether dianhydride, and 3,3',4,4'-benzophenone tetracarboxylic anhydride) and 4,4'-diamino-3,5-ditert butyl biphenyl ether as monomers. The results indicate that introducing tert-butyl branches in the main chain of PIs can enhance the free volume of the molecular chain and reduce the interaction between molecular chains of PI, resulting in a low dielectric constant. Particularly, the optimized PI-4 exhibits an excellent comprehensive performance with a high (5) wt% loss temperature (454 °C), tensile strength (117.40 MPa), and maximum hydrophobic angle (80.16°), and a low dielectric constant (2.90), which outperforms most of the results reported to date.

2.
Animals (Basel) ; 13(22)2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-38003068

RESUMO

The aim of this study was to investigate the molecular mechanisms by which hypoxia affects the biological behavior of yak PASMCs, the changes in the histological structure of yak and cattle lungs, and the relationships and regulatory roles that exist regarding the differences in the distribution and expression of PDK1 and its hypoxia-associated factors screened for their role in the adaptation of yak lungs to the plateau hypoxic environment. The results showed that, at the level of transcriptome sequencing, the molecular regulatory mechanisms of the HIF-1 signaling pathway, glucose metabolism pathway, and related factors (HK2/PGK1/ENO1/ENO3/ALDOC/ALDOA) may be closely related to the adaptation of yaks to the hypoxic environment of the plateau; at the tissue level, the presence of filled alveoli and semi-filled alveoli, thicker alveolar septa and basement membranes, a large number of erythrocytes, capillary distribution, and collagen fibers accounted for all levels of fine bronchioles in the lungs of yaks as compared to cattle. A higher percentage of goblet cells was found in the fine bronchioles of yaks, and PDK1, HIF-1α, and VEGF were predominantly distributed and expressed in the monolayers of ciliated columnar epithelium in the branches of the terminal fine bronchioles of yak and cattle lungs, with a small amount of it distributed in the alveolar septa; at the molecular level, the differences in PDK1 mRNA relative expression in the lungs of adult yaks and cattle were not significant (p > 0.05), the differences in HIF-1α and VEGF mRNA relative expression were significant (p < 0.05), and the expression of PDK1 and HIF-1α proteins in adult yaks was stronger than that in adult cattle. PDK1 and HIF-1α proteins were more strongly expressed in adult yaks than in adult cattle, and the difference was highly significant (p < 0.01); the relative expression of VEGF proteins was not significantly different between adult yaks and cattle (p > 0.05). The possible regulatory relationship between the above results and the adaptation of yak lungs to the plateau hypoxic environment paves the way for the regulatory mechanisms of PDK1, HIF-1α, and VEGF, and provides basic information for studying the mechanism of hypoxic adaptation of yaks in the plateau. At the same time, it provides a reference for human hypoxia adaptation and a target for the prevention and treatment of plateau diseases in humans and plateau animals.

3.
PeerJ ; 10: e14369, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36452079

RESUMO

Background: Yaks are animals that have lived in plateau environments for generations. Yaks can adapt to the hypoxic plateau environment and also pass this adaptability on to the next generation. The lungs are the most important respiratory organs for mammals to adapt to their environment. Pulmonary artery smooth muscle cells play an important role in vascular remodeling under hypoxia, but the genetic mechanism underpinning the yak's ability to adapt to challenging plateau conditions is still unknown. Methods: A tandem mass tag (TMT) proteomics study together with an RNA-seq transcriptome analysis were carried out on pulmonary artery smooth muscle cells (PASMCs) that had been grown for 72 hours in both normoxic (20% O2) and hypoxic (1% O2) environments. RNA and TP (total protein) were collected from the hypoxic and normoxic groups for RNA-seq transcriptome sequencing and TMT marker protein quantification, and RT-qPCR validation was performed. Results: A total of 17,711 genes and 6,859 proteins were identified. Further, 5,969 differentially expressed genes (DEGs) and 531 differentially expressed proteins (DEPs) were identified in the comparison group, including 2,924 and 186 upregulated genes and proteins and 3,045 and 345 down-regulated genes and proteins, respectively. The transcriptomic and proteomic analyses revealed that 109 DEGs and DEPs were highly positively correlated, with 77 genes showing the same expression trend. Nine overlapping genes were identified in the HIF-1 signaling pathway, glycolysis / gluconeogenesis, central carbon metabolism in cancer, PPAR signaling pathway, AMPK signaling pathway, and cholesterol metabolism (PGAM1, PGK1, TPI1, HMOX1, IGF1R, OLR1, SCD, FABP4 and LDLR), suggesting that these differentially expressed genes and protein functional classifications are related to the hypoxia-adaptive pathways. Overall, our study offers abundant data for further analysis of the molecular mechanisms in yak PASMCs and their adaptability to different oxygen concentrations.


Assuntos
Proteoma , Transcriptoma , Animais , Bovinos , Transcriptoma/genética , Proteoma/genética , Artéria Pulmonar , Proteômica , Hipóxia/genética , Miócitos de Músculo Liso , Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...