Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 11(22): e2310181, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38514900

RESUMO

Electrochemical activation usually accompanies in situ atom rearrangement forming new catalytic sites with higher activity due to reconstructed atomic clusters or amorphous phases with abundant dangling bonds, vacancies, and defects. By harnessing the pre-catalytic process of reconstruction, a multilevel structure of CuNi alloy nanoparticles encapsulated in N-doped carbon (CuNi nanoalloy@N/C) transforms into a highly active compound of Ni-doped CuO nanocluster supported on (N/O-C) co-doped C. Both the exposure of accessible active sites and the activity of individual active sites are greatly improved after the pre-catalytic reconstruction. Manipulating the Cu/Ni ratios of CuNi nanoalloy@N/C can tailor the electronic property and d-band center of the high-active compound, which greatly optimizes the energetics of oxygen evolution reaction (OER) intermediates. This interplay among Cu, Ni, C, N, and O modifies the interface, triggers the active sites, and regulates the work functions, thereby realizing a synergistic boost in OER.

2.
Adv Sci (Weinh) ; 10(33): e2303636, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37752758

RESUMO

The effects of near surface or surface mechanisms on electrochemical performance (lower specific capacitance density) hinders the development of 3D printed micro supercapacitors (MSCs). The reasonable internal structural characteristics of printed electrodes and the appropriate intercalation material can effectively compensate for the effects of surface or near-surface mechanisms. In this study, a layered structure is constructed inside an electrode using an ink with liquid-crystal characteristics, and the pore structure and oxidation active sites of the layered electrode are optimized by controlling the amount of Co3 O4 -quantum dots (Co3 O4 QDs). The Co3 O4 QDs are distributed in the pores of the electrode surface, and the insertion of Co3 O4 QDs can effectively compensate for the limitations of surface or near-surface mechanisms, thus effectively improving the pseudocapacitive characteristics of the 3D-printed MSCs. The 3D printed MSC exhibits a high area capacitance (306.13 mF cm-2 ) and energy density (34.44 µWh cm-2 at a power density of 0.108 mW cm-2 ). Therefore, selecting the appropriate materials to construct printable electrode structures and effectively adjusting material ratios for efficient 3D printing are expected to provide feasible solutions for the construction of various high-energy storage systems such as MSCs.

3.
Adv Sci (Weinh) ; 10(8): e2205889, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36683169

RESUMO

Combining morphological control engineering and diatomic coupling strategies, heteronuclear FeCo bimetals are efficiently intercalated into nitrogen-doped carbon materials with star-like to simultaneously accelerate oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). The half-wave potential and kinetic current density of the ORR driven by FeCoNC/SL surpass the commercial Pt/C catalyst. The overpotential of OER is as low as 316 mV (η10 ), and the mass activity is at least 3.2 and 9.4 times that of mononuclear CoNC/SL and FeNC/SL, respectively. The power density and specific capacity of the Zn-air battery with FeCoNC/SL as air cathode are as high as 224.8 mW cm-2 and 803 mAh g-1 , respectively. Morphologically, FeCoNC/SL endows more reactive sites and accelerates the process of oxygen reaction. Density functional theory reveals the active site of the heteronuclear diatomic, and the formation of FeCoN5C configuration can effectively tune the d-band center and electronic structure. The redistribution of electrons provides conditions for fast electron exchange, and the change of the center of the d-band avoids the strong adsorption of intermediate species to simultaneously take into account both ORR and OER and thus achieve high-performance Zn-air batteries.

4.
RSC Adv ; 10(73): 44793-44797, 2020 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-35516262

RESUMO

In this work, a magnetic graphene oxide-ultrathin metal-organic framework composite (Fe3O4@SiO2-GO-Ni-MOF) was synthesized for the first time. Employing Fe3O4@SiO2-GO-Ni-MOF composite as extractant, a novel method for the separation and analysis of the pesticide epoxiconazole was established with the assistance of high performance liquid chromatography (HPLC). The adsorption mechanisms were studied including by adsorption kinetics, thermodynamic parameters and adsorption isotherms. The experimental results showed that this method was convenient, operable, effective and practical for the extraction and determination of epoxiconazole in real samples.

5.
BMC Musculoskelet Disord ; 20(1): 393, 2019 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-31470845

RESUMO

BACKGROUND: The correlation between peripheral blood neutrophil level and osteonecrosis of the femoral head (ONFH) has not been extensively studied. Thus, we aimed to investigate the correlation between neutrophil level in the peripheral blood (neutrophil granulocyte) and ONFH. METHODS: A total of 984 cases of ONFH and femoral neck fractures (non-ONFH) diagnosed at the Department of Orthopedics at our institution between January 1, 2011 and December 31, 2016 were retrospectively reviewed. The ONFH and non-ONFH groups comprised 488 and 496 cases, respectively. Basic information and peripheral blood cell levels of the two groups were compared. RESULTS: The patients' mean age was 59.89 ± 17.06 years (range: 38-82 years). There were 457 male and 527 female patients, with a male-to-female ratio of 1:1.15. We found that neutrophil granulocyte levels and percentage of neutrophil granulocytes were significantly different between the ONFH and non-ONFH groups. Multimodal regression analysis showed that the percentage of neutrophil granulocytes was an independent protective factor against ONFH. CONCLUSIONS: The factors influencing ONFH are neutrophil granulocyte levels and percentage of neutrophil granulocytes. Percentage of neutrophil granulocytes has a significant correlation with aseptic femoral head necrosis, providing a new perspective and direction for further study of femoral head necrosis.


Assuntos
Necrose da Cabeça do Fêmur/diagnóstico , Neutrófilos , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Feminino , Fraturas do Colo Femoral/sangue , Necrose da Cabeça do Fêmur/sangue , Necrose da Cabeça do Fêmur/imunologia , Humanos , Contagem de Leucócitos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos
6.
Talanta ; 161: 325-332, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27769414

RESUMO

Ionic liquids-ß-cyclodextrin polymer (ILs-ß-CDCP) was attached on Fe3O4 nanoparticles to prepare magnetic solid phase extraction agent (Fe3O4@ILs-ß-CDCP). The properties and morphology of Fe3O4@ILs-ß-CDCP were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction(XRD), size distribution and magnetic analysis. A new method of magnetic solid phase extraction (MSPE) coupled to ICP-OES for the speciation of Mn(II)/Mn(VII) in water samples was established. The results showed that Mn(VII) and total manganese [Mn(II)+Mn(VII)] were quantitatively extracted after adjusting aqueous sample solution to pH 6.0 and 10.0, respectively. Mn(II) was calculated by subtraction of Mn(VII) from total manganese. Fe3O4@ILs-ß-CDCP showed a higher adsorption capacity toward Mn(II) and Mn(VII). Several factors, such as the pH value, extraction temperature and sample volume, were optimized to achieve the best extraction efficiency. Moreover, the adsorption ability of Fe3O4@ILs-ß-CDCP would not be significantly lower after reusing of 10 times. The accuracy of the developed method was confirmed by analyzing certified reference materials (GSB 07-1189-2000), and by spiking spring water, city water and lake water samples.


Assuntos
Líquidos Iônicos/química , Nanopartículas de Magnetita/química , Manganês/análise , Poluentes da Água/análise , beta-Ciclodextrinas/química , Água Potável/análise , Lagos/química , Manganês/química , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Águas Minerais/análise , Espectroscopia de Infravermelho com Transformada de Fourier , Poluentes da Água/química , Difração de Raios X
7.
PLoS One ; 11(4): e0152250, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27044039

RESUMO

Dust storm has serious disastrous impacts on environment, human health, and assets. The developments and applications of dust storm models have contributed significantly to better understand and predict the distribution, intensity and structure of dust storms. However, dust storm simulation is a data and computing intensive process. To improve the computing performance, high performance computing has been widely adopted by dividing the entire study area into multiple subdomains and allocating each subdomain on different computing nodes in a parallel fashion. Inappropriate allocation may introduce imbalanced task loads and unnecessary communications among computing nodes. Therefore, allocation is a key factor that may impact the efficiency of parallel process. An allocation algorithm is expected to consider the computing cost and communication cost for each computing node to minimize total execution time and reduce overall communication cost for the entire simulation. This research introduces three algorithms to optimize the allocation by considering the spatial and communicational constraints: 1) an Integer Linear Programming (ILP) based algorithm from combinational optimization perspective; 2) a K-Means and Kernighan-Lin combined heuristic algorithm (K&K) integrating geometric and coordinate-free methods by merging local and global partitioning; 3) an automatic seeded region growing based geometric and local partitioning algorithm (ASRG). The performance and effectiveness of the three algorithms are compared based on different factors. Further, we adopt the K&K algorithm as the demonstrated algorithm for the experiment of dust model simulation with the non-hydrostatic mesoscale model (NMM-dust) and compared the performance with the MPI default sequential allocation. The results demonstrate that K&K method significantly improves the simulation performance with better subdomain allocation. This method can also be adopted for other relevant atmospheric and numerical modeling.


Assuntos
Algoritmos , Processos Climáticos , Simulação por Computador , Poeira , Modelos Teóricos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...