Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Food Microbiol ; 385: 110000, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36370528

RESUMO

Peracetic acid (PAA) applied to whole poultry carcasses can reduce the number of Campylobacter, a leading cause of human gastroenteritis. However, previous modelling experiments indicated that Campylobacter survived in greater numbers when pre-treated with a thermal stress equivalent to poultry processing scalding prior to chilling with PAA than when subject to chilling with PAA only. To better understand how Campylobacter responds to PAA, proteomes of C. jejuni poultry strain 2704 were measured after exposure to PAA (60 ppm, pH 4.0) for 45 min under laboratory ambient conditions (approximately 23 °C) to establish a foundational map of survival mechanism before combining with other stresses. Analysis of 580 quantified proteins did not indicate a triggered "peroxide shock" response, nor were common heat shock responses detected. Thioredoxin, iron homeostatic, peroxiredoxins and cytochrome c peroxidases became more abundant suggesting that PAA disturbed cytoplasmic redox homeostasis resulting in antioxidant activation and increased prioritisation of iron homeostasis. The PAA treatment led to responses that included an increased priority for oxidative phosphorylation and a simultaneous decrease in central metabolism associated protein abundances. Lon protease was induced suggesting it has a role in maintaining homeostasis during non-thermal stress. Proteins in flagella and chemotaxis became more abundant though whether PAA has a chemorepellent effect requires further investigation. Overall, the proteome data suggests there was a rapid cellular response to applied PAA stress in the first 15 min with the adaptation to the stress completing between 30 and 45 min. The findings will help guide PAA implementation in commercial poultry processing in terms of processing location and length of application.


Assuntos
Campylobacter jejuni , Campylobacter , Animais , Humanos , Ácido Peracético/farmacologia , Aves Domésticas , Proteoma , Microbiologia de Alimentos , Manipulação de Alimentos/métodos , Galinhas , Ferro
2.
Appl Environ Microbiol ; 86(12)2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32276979

RESUMO

It is important for the poultry industry to maximize product safety and quality by understanding the connection between bacterial diversity on chicken carcasses throughout poultry processing to the end of shelf life and the impact of the local processing environment. Enumeration of total aerobic bacteria, Campylobacter and Pseudomonas, and 16S rRNA gene amplicon sequencing were used to evaluate the processing line by collecting 10 carcasses from five processing steps: prescald, postplucker, pre- and post-immersion chill, and post-air chill. The diversity throughout a 12-day shelf life was also determined by examining 30 packaged carcasses. To identify the sources of possible contamination, scald water tank, immersion chilling water tank, air samples, and wall surfaces in the air-chill room were analyzed. Despite bacterial reductions on carcasses (>5 log10 CFU/ml) throughout the process, each step altered the bacterial diversity. Campylobacter was a minor but persistent component in the bacterial community on carcasses. The combination of scalding, defeathering, and plucking distributed thermophilic spore-forming Anoxybacillus to carcasses, which remained at a high abundance on carcasses throughout subsequent processes. Pseudomonas was not isolated from carcasses after air chilling but was abundant on the wall of the air-chill room and became the predominant taxon at the end of shelf life, suggesting possible contamination through air movement. The results suggest that attention is needed at each processing step, regardless of bacterial reductions on carcasses. Changing scalding water regularly, maintaining good hygiene practices during processing, and thorough disinfection at the end of each processing day are important to minimize bacterial transmission.IMPORTANCE Culture-based and culture-independent approaches were utilized to reveal bacterial community changes on chicken carcasses at different processing steps and potential routes from the local processing environment. Current commercial processing effectively reduced bacterial loads on carcasses. Poultry processes have similar processes across facilities, but various processing arrangements and operating parameters could impact the bacterial transmission and persistence on carcasses differently. This study showed the use of a single tunnel incorporating scalding, defeathering and plucking may undesirably distribute the thermoduric bacteria, e.g., Campylobacter and Anoxybacillus, between the local environment and carcasses, whereas this does not occur when these steps are separated. The length of immersion and air chilling also impacted bacterial diversity on carcasses. Air chilling can transfer Pseudomonas from wall surfaces onto carcasses; this may subsequently influence chicken product shelf life. This study helps poultry processors understand the impact of current commercial processing and improve the chicken product quality and safety.


Assuntos
Bactérias Aeróbias/fisiologia , Campylobacter/fisiologia , Manipulação de Alimentos , Microbiologia de Alimentos , Produtos Avícolas/microbiologia , Pseudomonas/fisiologia , Animais , Galinhas
3.
Food Microbiol ; 86: 103350, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31703868

RESUMO

Understanding the bacterial community profile through poultry processing could help the industry to produce better poultry products. In this study, 10 chicken carcasses were randomly sampled from before and after scalding, before and after immersion chilling, and after air chilling each through a modern commercial processing line, along with the contents of 10 caeca. The sampled processing line effectively reduced the bacterial counts by > 4.6 Log10 CFU/ml for each of Total Viable Counts, Escherichia coli and Campylobacter. However, the metagenomics results suggested that Lactobacillus, Staphylococcus and unclassified Lachnospiraceae persisted at all sampling stages. Pseudomonas, Paeniglutamicibacter, Chryseobacterium and Pseudarthrobacter comprised 47.2% in the bacterial community on samples after air chilling compared to 0.3% on samples after immersion chilling, whereas TVCs were the same. Overall, the current interventions of the investigated poultry processing line were unable to eliminate persistence of certain foodborne pathogens, despite a significant reduction of the overall bacterial counts. Chilling is an important controlling point in contamination/cross-contamination, particularly extended air chilling. Lastly, the large presence of Pseudomonas on chickens after air chilling may lead to downstream spoilage related issues, which needs more investigation to explore quantitatively the effect on the shelf life of poultry products.


Assuntos
Bactérias/crescimento & desenvolvimento , Biodiversidade , Galinhas/microbiologia , Produtos Avícolas/microbiologia , Animais , Austrália , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Contagem de Colônia Microbiana , Contaminação de Alimentos/análise , Manipulação de Alimentos , Produtos Avícolas/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...