Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Res ; 143: 188-197, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-29957407

RESUMO

Raw water transportation pipelines are vital in an urban water supply system for transporting raw water to drinking water treatment plants. This study investigated the effects of pipe material on nitrogen transformation, microbial communities and characteristics of related function genes in paint-lined steel pipe (PLSP) and cement-lined steel pipe (CLSP) raw water model systems. We established quantitative relationships between specific functional genes and change rates of nitrogen pollutants, which were verified by field investigation on nitrogen pollutant transformations in real raw water transportation systems. The results showed that the CLSP produced higher ammonia nitrogen (NH4+-N) transformation rates and higher effluent concentrations of nitrate nitrogen (NO3--N) and dissolved organic nitrogen (DON) than the PLSP. Both pipes achieved high and stable nitrite nitrogen (NO2--N) and low total nitrogen (TN) removal efficiency. Nitrification was found to be the dominant process in both model systems, especially in the CLSP. Characteristics of microbial communities and nitrogen functional genes, which were analysed by high-throughput pyrosequencing and quantitative polymerase chain reaction (qPCR), respectively, varied between the two pipe systems. Nitrogen transformation pathways, identified by path analysis, were also different between the PLSP and CLSP due to different microbial community characteristics and synergistic effects of nitrogen functional genes. In the CLSP, (NH4+-N→NO2--N) with part denitrification, was the primary transformation pathway of ammonia nitrogen (NH4+-N), while only ammonia oxidization contributed to NH4+-N transformation in the PLSP. (NO2--N→NO3--N) was the main pathway involved in NO2--N transformation and NO3--N accumulation. The TN removal showed complex relationships with nitrification, denitrification and nitrogen fixation processes. These findings provided molecular-level insights into nitrogen pollutant transformations during the transportation of raw water through different types of pipes and technical support for the selection of raw water pipe materials. In our study area, the Taihu basin, China, PLSP was better than CLSP for distributing raw water in a short transportation distance, due to the lower effluent concentrations of DON and NO3--N and less abundance of microorganisms.


Assuntos
Equipamentos e Provisões/microbiologia , Consórcios Microbianos/genética , Nitrogênio/metabolismo , Abastecimento de Água/métodos , China , Desnitrificação , Nitratos/análise , Nitratos/metabolismo , Nitrificação , Nitritos/análise , Nitritos/metabolismo , Oxirredução , Aço , Água/análise , Poluentes Químicos da Água/análise , Purificação da Água/métodos
2.
Environ Sci Pollut Res Int ; 24(23): 19393-19401, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28674956

RESUMO

Without treatment, waterworks sludge is ineffective as an adsorbent. In this study, raw waterworks sludge was used as the raw material to prepare modified sludge particles through high-temperature calcination and alkali modification. The feasibility of using a combination of modified particles and polyaluminum chloride (PAC) as a coagulant for treatment of slightly polluted source water was also investigated. The composition, structure, and surface properties of the modified particles were characterized, and their capabilities for removing ammonia nitrogen and turbidity were determined. The results indicate that the optimal preparation conditions for the modified sludge particles were achieved by preparing the particles with a roasting temperature of 483.12 °C, a roasting time of 3.32 h, and a lye concentration of 3.75%. Furthermore, enhanced coagulation is strengthened with the addition of modified sludge particles, which is reflected by reduction of the required PAC dose and enhancement of the removal efficiency of ammonia nitrogen and turbidity by over 80 and 93%, respectively. Additional factors such as pH, temperature, dose, and dosing sequence were also evaluated. The optimum doses of modified particles and PAC were 40 and 15 mg/L, respectively, and adding modified particles at the same time as or prior to adding PAC improves removal efficiency.


Assuntos
Esgotos/química , Purificação da Água/métodos , Adsorção , Hidróxido de Alumínio/química , Estudos de Viabilidade , Floculação , Poluentes Químicos da Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...