Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Robot AI ; 8: 629523, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33969002

RESUMO

Dynamic locomotion of a quadruped robot emerges from interaction between the robot body and the terrain. When the robot has a soft body, dynamic locomotion can be realized using a simple controller. This study investigates dynamic turning of a soft quadruped robot by changing the phase difference among the legs of the robot. We develop a soft quadruped robot driven by McKibben pneumatic artificial muscles. The phase difference between the hind and fore legs is fixed whereas that between the left and right legs is changed to enable the robot to turn dynamically. Since the robot legs are soft, the contact pattern between the legs and the terrain can be varied adaptively by simply changing the phase difference. Experimental results demonstrate that changes in the phase difference lead to changes in the contact time of the hind legs, and as a result, the soft robot can turn dynamically.

2.
R Soc Open Sci ; 8(4): 201947, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33868696

RESUMO

The human foot provides numerous functions that let humans deal with various environments. Recently, study of the structure of the human foot and adjustment of an appropriate reaction force and vertical free moment during bipedal locomotion has gained attention. However, little is known about the mechanical (morphological) contribution of the foot structure to the reaction force and free moment. It is difficult to conduct a comparative experiment to investigate the contribution systematically by using conventional methods with human and cadaver foot experiments. This study focuses on the oblique transverse tarsal joint (TTJ) of the human foot, whose mechanical structure can generate appropriate free moments. We conduct comparative experiments with a rigid foot, a non-oblique joint foot (i.e. mimicking only the flexion/extension of the midfoot), and an oblique joint foot. Axial loading and walking experiments were conducted with these feet. The axial loading experiment demonstrated that the oblique foot generated free moment in the direction of internal rotation, as observed in the human foot. The walking experiment showed that the magnitude of the free moment generated with the oblique foot is significantly lower than that with the rigid foot during the stance phase. Using this constructive approach, the present study demonstrated that the oblique axis of the TTJ can mechanically generate free moments. This capacity might affect the transverse motion of bipedal walking.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...