Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
World J Clin Cases ; 10(17): 5655-5666, 2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35979124

RESUMO

BACKGROUND: Peroral endoscopic myotomy (POEM) is a safe and effective endoscopic treatment for achalasia. However, postoperative pain management for these patients is often neglected by anesthesiologists because of the short operative time, short hospital stay and the minimally invasive nature of the procedure. AIM: To assess the pain and sleep quality of achalasia patients receiving the POEM procedure and investigate factors that affect postoperative pain. METHODS: This observational study included patients with achalasia who underwent POEM at Zhongshan Hospital from December 2017 to March 2018. General anesthesia was performed with endotracheal intubation. The postoperative visual analog scale (VAS), postoperative sleep quality, basic patient information, and surgical parameters were collected. Depending on whether the 12-h post-POEM VAS score was less than 4, patients were divided into two groups, a well-controlled pain group and a poorly controlled pain group. Univariate, multivariate, and stepwise logistic regression analyses were used to investigate risk factors for poor pain control. A prediction model of post-POEM pain risk was established in the form of a nomogram. The calibration curve and receiver operating characteristic curve were used to evaluate the clinical usage of the prediction model. Repeated measures analysis of variance and simple effect analysis were used to verify whether differences in the VAS and sleep scores of the high- and low-risk groups, divided by the model from the raw data, were statistically significant. RESULTS: A total of 45 eligible patients were included. Multivariate logistic regression and further stepwise logistic regression analysis found that the preoperative Eckardt score [odds ratio (OR): 1.82, 95% confidence interval (CI): 1.17-2.84, P < 0.001], previous treatment (OR: 7.59, 95%CI: 1.12-51.23, P = 0.037) and the distance between the end of the muscle incision and the cardia (OR: 1.52, 95%CI: 0.79-293.93, P = 0.072) were risk factors for post-POEM pain. Repeated measures analysis of variance demonstrated that VAS (P = 0.0097) and sleep scores (P = 0.043) were higher in the high-risk group, and the interactions between the two main effects were obvious (VAS score: P = 0.019, sleep score: P = 0.035). Further simple effect analysis found that VAS scores were higher in the high-risk group at 2 h, 6 h and 12 h (P = 0.005, P = 0.019, P < 0.001), and sleep scores were higher in the high-risk group at day 1 (P = 0.006). CONCLUSION: Achalasia patients who underwent POEM experienced serious postoperative pain, which may affect sleep quality. A higher Eckardt score, previous treatment, and a longer distance between the muscle incision ending and the cardia were risk factors for poor post-POEM pain control.

2.
Mol Oncol ; 15(1): 228-245, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33128264

RESUMO

Salt-inducible kinase 2 (SIK2) is an important regulator in various intracellular signaling pathways related to apoptosis, tumorigenesis and metastasis. However, the involvement of SIK2 in gastric tumorigenesis and the functional linkage with gastric cancer (GC) progression remain to be defined. Here, we report that SIK2 was significantly downregulated in human GC tissues, and reduced SIK2 expression was associated with poor prognosis of patients. Overexpression of SIK2 suppressed the migration and invasion of GC cells, whereas knockdown of SIK2 enhanced cell migratory and invasive capability as well as metastatic potential. These changes in the malignant phenotype resulted from the ability of SIK2 to suppress epithelial-mesenchymal transition via inhibition of AKT/GSK3ß/ß-catenin signaling. The inhibitory effect of SIK2 on AKT/GSK3ß/ß-catenin signaling was mediated primarily through inactivation of AKT, due to its enhanced dephosphorylation by the upregulated protein phosphatases PHLPP2 and PP2A. The upregulation of PHLPP2 and PP2A was attributable to SIK2 phosphorylation and activation of mTORC1, which inhibited autophagic degradation of these two phosphatases. These results suggest that SIK2 acts as a tumor suppressor in GC and may serve as a novel prognostic biomarker and therapeutic target for this tumor.


Assuntos
Autofagia , Fosfoproteínas Fosfatases/metabolismo , Proteína Fosfatase 2/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteólise , Transdução de Sinais , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Animais , Linhagem Celular Tumoral , Estudos de Coortes , Regulação para Baixo/genética , Transição Epitelial-Mesenquimal/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , Modelos Biológicos , Fenótipo , Fosfoproteínas Fosfatases/genética , Prognóstico , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias Gástricas/genética , Regulação para Cima/genética , beta Catenina/metabolismo
3.
Front Genet ; 11: 555537, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193629

RESUMO

Hepatocellular carcinoma (HCC) is one of the most lethal cancers globally. Hepatitis B virus (HBV) infection might cause chronic hepatitis and cirrhosis, leading to HCC. To screen prognostic genes and therapeutic targets for HCC by bioinformatics analysis and determine the mechanisms underlying HBV-related HCC, three high-throughput RNA-seq based raw datasets, namely GSE25599, GSE77509, and GSE94660, were obtained from the Gene Expression Omnibus database, and one RNA-seq raw dataset was acquired from The Cancer Genome Atlas (TCGA). Overall, 103 genes were up-regulated and 127 were down-regulated. A protein-protein interaction (PPI) network was established using Cytoscape software, and 12 pivotal genes were selected as hub genes. The 230 differentially expressed genes and 12 hub genes were subjected to functional and pathway enrichment analyses, and the results suggested that cell cycle, nuclear division, mitotic nuclear division, oocyte meiosis, retinol metabolism, and p53 signaling-related pathways play important roles in HBV-related HCC progression. Further, among the 12 hub genes, kinesin family member 11 (KIF11), TPX2 microtubule nucleation factor (TPX2), kinesin family member 20A (KIF20A), and cyclin B2 (CCNB2) were identified as independent prognostic genes by survival analysis and univariate and multivariate Cox regression analysis. These four genes showed higher expression levels in HCC than in normal tissue samples, as identified upon analyses with Oncomine. In addition, in comparison with normal tissues, the expression levels of KIF11, TPX2, KIF20A, and CCNB2 were higher in HBV-related HCC than in HCV-related HCC tissues. In conclusion, our results suggest that KIF11, TPX2, KIF20A, and CCNB2 might be involved in the carcinogenesis and development of HBV-related HCC. They can thus be used as independent prognostic genes and novel biomarkers for the diagnosis of HBV-related HCC and development of pertinent therapeutic strategies.

4.
PeerJ ; 8: e9745, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33194344

RESUMO

The mutualistic symbiosis between anthozoans and intra-gastrodermal dinoflagellates of the family Symbiodiniaceae is the functional basis of all coral reef ecosystems, with the latter providing up to 95% of their fixed photosynthate to their hosts in exchange for nutrients. However, recent studies of sponges, jellyfish, and anemones have revealed the potential for this mutualistic relationship to shift to parasitism under stressful conditions. Over a period of eight weeks, we compared the physiological conditions of both inoculated and aposymbiotic anemones (Exaiptasia pallida) that were either fed or starved. By the sixth week, both fed groups of anemones were significantly larger than their starved counterparts. Moreover, inoculated and starved anemones tended to disintegrate into "tissue balls" within eight weeks, and 25% of the samples died; in contrast, starved aposymbiotic anemones required six months to form tissue balls, and no anemones from this group died. Our results show that the dinoflagellates within inoculated anemones may have posed a fatal metabolic burden on their hosts during starvation; this may be because of the need to prioritize their own metabolism and nourishment at the expense of their hosts. Collectively, our study reveals the potential of this dynamic symbiotic association to shift away from mutualism during food-deprived conditions.

5.
FEBS Lett ; 594(19): 3108-3121, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32671843

RESUMO

Apolipoprotein L1 (APOL1) participates in lipid metabolism. Here, we investigate the mechanisms regulating APOL1 gene expression in hepatoma cells. We demonstrate that the -80-nt to +31-nt region of the APOL1 promoter, which contains one SP transcription factor binding GT box and an interferon regulatory factor (IRF) binding ISRE element, maintains the maximum activity. Mutation of the GT box and ISRE element dramatically reduces APOL1 promoter activity. EMSA and chromatin immunoprecipitation assay reveal that the transcription factors Sp1, IRF1 and IRF2 could interact with their cognate binding sites on the APOL1 promoter. Overexpression of Sp1, IRF1 and IRF2 increases promoter activity, leading to increased APOL1 mRNA and protein levels, while knockdown of Sp1, IRF1 and IRF2 has the opposite effects. These results demonstrate that the APOL1 gene could be regulated by Sp1, IRF1 and IRF2 in hepatoma cells.


Assuntos
Apolipoproteína L1/genética , Carcinoma Hepatocelular/genética , Regulação Neoplásica da Expressão Gênica , Fator Regulador 1 de Interferon/metabolismo , Fator Regulador 2 de Interferon/metabolismo , Neoplasias Hepáticas/genética , Fator de Transcrição Sp1/metabolismo , Transcrição Gênica , Apolipoproteína L1/metabolismo , Sequência de Bases , Linhagem Celular Tumoral , Células HEK293 , Humanos , Regiões Promotoras Genéticas , Ligação Proteica , Elementos de Resposta/genética
7.
Toxicol Appl Pharmacol ; 381: 114729, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31445927

RESUMO

The PI3K/AKT signaling pathway is one of the most frequently activated signaling networks in human cancers and has become a valuable target in anticancer therapy. However, accumulating reports suggest that adverse effects such as severe liver injury and inflammation may accompany treatment with pan-PI3K and pan-AKT inhibitors. Our prior work has demonstrated that activation of the PI3K/AKT pathway has a protective role in Fas- or TNFα-induced hepatocytic cell death and liver injury. We postulated that PI3K or AKT inhibitors may exacerbate liver damage via the death factor-mediated hepatocyte apoptosis. In this study we found that several drugs targeting PI3K/AKT either clinically used or in clinical trials sensitized hepatocytes to agonistic anti-Fas antibody- or TNFα-induced apoptosis and significantly shortened the survival of mice in in vivo liver damage models. The PI3K or AKT inhibitors promoted Fas aggregation, inhibited the expression of cellular FLICE-inhibitory protein S and L (FLIPL/S), and enhanced procaspase-8 activation. Conversely, cotreatment with the AKT specific activator SC79 reversed these effects. Taken together, these findings suggest that PI3K or AKT inhibitors may render hepatocytes hypersensitive to Fas- or TNFα-induced apoptosis and liver injury.


Assuntos
Apoptose/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas , Hepatócitos/efeitos dos fármacos , Inibidores de Fosfoinositídeo-3 Quinase/toxicidade , Inibidores de Proteínas Quinases/toxicidade , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Aminopiridinas/toxicidade , Animais , Anticorpos/toxicidade , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Células Hep G2 , Hepatócitos/metabolismo , Humanos , Imidazóis/toxicidade , Fígado/efeitos dos fármacos , Fígado/patologia , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Purinas/toxicidade , Quinazolinonas/toxicidade , Fator de Necrose Tumoral alfa/toxicidade
8.
Am J Physiol Gastrointest Liver Physiol ; 316(3): G387-G396, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30629471

RESUMO

Tumor necrosis factor-α (TNF-α) is a highly pleiotropic cytokine executing biological functions as diverse as cell proliferation, metabolic activation, inflammatory responses, and cell death. TNF-α can induce multiple mechanisms to initiate apoptosis in hepatocytes leading to the subsequent liver injury. Since the phosphoinositide-3-kinase/protein kinase B (PI3K/Akt) pathway is known to have a protective role in death factor-mediated apoptosis, it is our hypothesis that activation of Akt may represent a therapeutic strategy to alleviate TNF-α-induced hepatocyte apoptosis and liver injury. We report here that the Akt activator SC79 protects hepatocytes from TNF-α-induced apoptosis and protects mice from d-galactosamine (d-Gal)/lipopolysaccharide (LPS)-induced TNF-α-mediated liver injury and damage. SC79 not only enhances the nuclear factor-κB (NF-κB) prosurvival signaling in response to TNF-α stimulation, but also increases the expression of cellular FLICE (FADD-like IL-1ß-converting enzyme)-inhibitory protein L and S (FLIPL/S), which consequently inhibits the activation of procaspase-8. Furthermore, pretreatment of the PI3K/Akt inhibitor LY294002 reverses all the SC79-induced hepatoprotective effects. These results strongly indicate that SC79 protects against TNF-α-induced hepatocyte apoptosis and suggests that SC79 is likely a promising therapeutic agent for ameliorating the development of liver injury. NEW & NOTEWORTHY SC79 protects hepatocytes from TNF-α-mediated apoptosis and mice from Gal/LPS-induced liver injury and damage. Cytoprotective effects of SC79 against TNF-α act through both AKT-mediated activation of NF-κB and upregulation of FLIPL/S.


Assuntos
Apoptose/efeitos dos fármacos , Doença Hepática Crônica Induzida por Substâncias e Drogas/tratamento farmacológico , Hepatócitos/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , Animais , Doença Hepática Crônica Induzida por Substâncias e Drogas/patologia , Hepatócitos/metabolismo , Humanos , Lipopolissacarídeos/farmacologia , Fígado/efeitos dos fármacos , Fígado/lesões , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Fosfatidilinositol 3-Quinases/metabolismo , Substâncias Protetoras/farmacologia , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/efeitos dos fármacos
9.
Cell Physiol Biochem ; 51(1): 80-96, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30448843

RESUMO

BACKGROUND/AIMS: Chronic hepatitis B virus (HBV) infection markedly increases the risk of development of hepatocellular carcinoma (HCC). Among the seven viral proteins that HBV encodes, HBV X protein (HBx) appears to have the most oncogenic potential. The mitochondria-associated HBx can induce oxidative stress in hepatocytes, leading to the production of abundant reactive oxygen species (ROS). High levels of ROS usually induce oxidative DNA damage and 8-hydroxy-2-deoxyguanosine (8-OHdG), also known as 8-oxo-7,8-dihydro-2-deoxyguanosine (8-oxodG), which is one of the major products of DNA oxidation and an important biomarker for oxidative stress and carcinogenesis. Cells have evolved a mechanism to prevent oxidized nucleotides from their incorporation into DNA through nucleotide pool sanitization enzymes of MTH1 (NUDT1), MTH2 (NUDT15), MTH3 (NUDT18) and NUDT5. However, little is known as to whether HBx can regulate the expression of those enzymes and modulate the formation and accumulation of 8-oxodG in hepatocytes. METHODS: The level of 8-oxodG was assessed by ELISA in stable HBV-producing hepatoma cell lines, an HBV infectious mouse model, HBV and HBx transgenic mice and HBV-infected patients versus their respective controls. Expression of MTH1, MTH2, MTH3 and NUDT5 was determined by a real-time quantitative PCR and western blot analysis. Transcriptional regulation of MTH1 and MTH2 expression by HBx and the effect of HBx on MTH1 and MTH2 promoter hypermethylation were examined using a luciferase reporter assay and bisulfite sequencing analysis. RESULTS: In comparison with controls, significantly higher levels of 8-oxodG were detected in the genome and culture supernatant of stable HBV-producing HepG2.2.15 cells, in the sera and liver tissues of HBV infectious mice and HBV or HBx transgenic mice, and in the sera of HBV-infected patients. Expression of HBx in hepatocytes significantly increased 8-oxodG level and reduced the expression of MTH1 and MTH2 at both mRNA and protein levels. It was also demonstrated that HBx markedly attenuated the MTH1 or MTH2 promoter activities through hypermethylation. Furthermore, enhancement of 8-oxodG production by HBx was reversible by overexpression of MTH1 and MTH2. CONCLUSION: Our data show that HBx expression results in the accumulation of 8-oxodG in hepatocytes through inhibiting the expression of MTH1 and MTH2. This may implicate that HBx may act as a tumor promoter through facilitating the mutational potential of 8-oxodG thus connecting a possible link between HBV infection and liver carcinogenesis.


Assuntos
Enzimas Reparadoras do DNA/metabolismo , Desoxiguanosina/análogos & derivados , Monoéster Fosfórico Hidrolases/metabolismo , Pirofosfatases/metabolismo , Transativadores/metabolismo , 8-Hidroxi-2'-Desoxiguanosina , Animais , Linhagem Celular Tumoral , Dano ao DNA/efeitos dos fármacos , Metilação de DNA , Enzimas Reparadoras do DNA/genética , Desoxiguanosina/metabolismo , Hepatite B/metabolismo , Hepatite B/patologia , Hepatite B/virologia , Vírus da Hepatite B/metabolismo , Vírus da Hepatite B/patogenicidade , Hepatite B Crônica/metabolismo , Hepatite B Crônica/patologia , Hepatócitos/citologia , Hepatócitos/metabolismo , Humanos , Peróxido de Hidrogênio/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Monoéster Fosfórico Hidrolases/genética , Regiões Promotoras Genéticas , Pirofosfatases/genética , Espécies Reativas de Oxigênio/metabolismo , Transativadores/genética , Proteínas Virais Reguladoras e Acessórias
10.
J Virol ; 92(23)2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30209179

RESUMO

Hepatitis B spliced protein (HBSP) is known to associate with viral persistence and pathogenesis; however, its biological and clinical significance remains poorly defined. Acquired resistance to Fas-mediated apoptosis is thought to be one of the major promotors for hepatitis B virus (HBV) chronicity and malignancy. The purpose of this study was to investigate whether HBSP could protect hepatocytes against Fas-initiated apoptosis. We showed here that HBSP mediated resistance of hepatoma cells or primary human hepatocytes (PHH) to agonistic anti-Fas antibody (CH11)- or FasL-induced apoptosis. Under Fas signaling stimulation, expression of HBSP inhibited Fas aggregation and prevented recruitment of the adaptor molecule Fas-associated death domain (FADD) and procaspase-8 (or FADD-like interleukin-1ß-converting enzyme [FLICE]) into the death-inducing signaling complex (DISC) while increasing recruitment of cellular FLICE-inhibitory protein L (FLIPL) into the DISC. Those effects may be mediated through activation of the phosphoinositide 3-kinase (PI3K)/Akt pathway as evidenced by increased cellular phosphatidylinositol (3,4,5)-trisphosphate (PIP3) content and PI3K activity and enhanced phosphorylation of mTORC2 and PDPK1 as well as Akt itself. Confirmedly, inhibition of PI3K by LY294002 reversed the effect of HBSP on Fas aggregation, FLIPL expression, and cellular apoptosis. These results indicate that HBSP functions to prevent hepatocytes from Fas-induced apoptosis by enhancing PI3K/Akt activity, which may contribute to the survival and persistence of infected hepatocytes during chronic infection.IMPORTANCE Our study revealed a previously unappreciated role of HBSP in Fas-mediated apoptosis. The antiapoptotic activity of HBSP is important for understanding hepatitis B virus pathogenesis. In particular, HBV variants associated with hepatoma carcinoma may downregulate apoptosis of hepatocytes through enhanced HBSP expression. Our study also found that Akt is centrally involved in Fas-induced hepatocyte apoptosis and revealed that interventions directed at inhibiting the activation or functional activity of Akt may be of therapeutic value in this process.


Assuntos
Apoptose , Carcinoma Hepatocelular/patologia , Hepatócitos/patologia , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Virais/metabolismo , Receptor fas/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Hepatócitos/metabolismo , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Fosfatidilinositol 3-Quinase/genética , Proteínas Proto-Oncogênicas c-akt/genética , Células Tumorais Cultivadas , Proteínas Virais/genética , Receptor fas/genética
11.
J Immunol ; 201(8): 2303-2314, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30171166

RESUMO

The Fas receptor/ligand system plays a prominent role in hepatic apoptosis and hepatocyte death. Although hepatitis B virus (HBV) surface Ag (HBsAg) is the most abundant HBV protein in the liver and peripheral blood of patients with chronic HBV infection, its role in Fas-mediated hepatocyte apoptosis has not been disclosed. In this study, we report that HBsAg sensitizes HepG2 cells to agonistic anti-Fas Ab CH11-induced apoptosis through increasing the formation of SDS-stable Fas aggregation and procaspase-8 cleavage but decreasing both the expression of cellular FLIPL/S and the recruitment of FLIPL/S at the death-inducing signaling complex (DISC). Notably, HBsAg increased endoplasmic reticulum stress and consequently reduced AKT phosphorylation by deactivation of phosphoinositide-dependent kinase-1 (PDPK1) and mechanistic target of rapamycin complex 2 (mTORC2), leading to enhancement of Fas-mediated apoptosis. In a mouse model, expression of HBsAg in mice injected with recombinant adenovirus-associated virus 8 aggravated Jo2-induced acute liver failure, which could be effectively attenuated by the AKT activator SC79. Based on these results, it is concluded that HBsAg predisposes hepatocytes to Fas-mediated apoptosis and mice to acute liver failure via suppression of AKT prosurviving activity, suggesting that interventions directed at enhancing the activation or functional activity of AKT may be of therapeutic value in Fas-mediated progressive liver cell injury and liver diseases.


Assuntos
Antígenos de Superfície da Hepatite B/metabolismo , Vírus da Hepatite B/fisiologia , Hepatite B/metabolismo , Hepatócitos/fisiologia , Falência Hepática Aguda/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor fas/metabolismo , Acetatos/administração & dosagem , Acetatos/farmacologia , Adenoviridae/genética , Animais , Anticorpos Monoclonais/metabolismo , Apoptose , Benzopiranos/administração & dosagem , Benzopiranos/farmacologia , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/metabolismo , Caspase 8/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Células Hep G2 , Hepatite B/patologia , Hepatócitos/virologia , Humanos , Falência Hepática Aguda/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Proteínas Proto-Oncogênicas c-akt/agonistas , Receptor fas/imunologia
12.
Am J Pathol ; 188(5): 1171-1182, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29673487

RESUMO

Acute liver failure is a serious clinical problem of which the underlying pathogenesis remains unclear and for which effective therapies are lacking. The Fas receptor/ligand system, which is negatively regulated by AKT, is known to play a prominent role in hepatocytic cell death. We hypothesized that AKT activation may represent a strategy to alleviate Fas-induced fulminant liver failure. We report here that a novel AKT activator, SC79, protects hepatocytes from apoptosis induced by agonistic anti-Fas antibody CH11 (for humans) or Jo2 (for mice) and significantly prolongs the survival of mice given a lethal dose of Jo2. Under Fas-signaling stimulation, SC79 inhibited Fas aggregation, prevented the recruitment of the adaptor molecule Fas-associated death domain (FADD) and procaspase-8 [or FADD-like IL-1ß-converting enzyme (FLICE)] into the death-inducing signaling complex (DISC), but SC79 enhanced the recruitment of the long and short isoforms of cellular FLICE-inhibitory protein at the DISC. All of the SC79-induced hepatoprotective and DISC-interruptive effects were confirmed to have been reversed by the Akt inhibitor LY294002. These results strongly indicate that SC79 protects hepatocytes from Fas-induced fatal hepatic apoptosis. The potent alleviation of Fas-mediated hepatotoxicity by the relatively safe drug SC79 highlights the potential of our findings for immediate hepatoprotective translation.


Assuntos
Acetatos/farmacologia , Apoptose/efeitos dos fármacos , Benzopiranos/farmacologia , Hepatócitos/efeitos dos fármacos , Falência Hepática Aguda/prevenção & controle , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor fas/metabolismo , Animais , Caspases/metabolismo , Células Hep G2 , Hepatócitos/metabolismo , Humanos , Falência Hepática Aguda/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL
13.
Sci Rep ; 7(1): 3244, 2017 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-28607345

RESUMO

Lipid bodies (LBs) in the coral gastrodermal tissues are key organelles in the regulation of endosymbiosis and exhibit a diel rhythmicity. Using the scleractinian Euphyllia glabrescens collected across the diel cycle, we observed temporally dynamic lipid profiles in three cellular compartments: host coral gastrodermal cells, LBs, and in hospite Symbiodinium. Particularly, the lipidome varied over time, demonstrating the temporally variable nature of the coral-Symbiodinium endosymbiosis. The lipidome-scale data highlight the dynamic, light-driven metabolism of such associations and reveal that LBs are not only lipid storage organelles but also act as a relay center in metabolic trafficking. Furthermore, lipogenesis in LBs is significantly regulated by coral hosts and the lipid metabolites within holobionts featured predominantly triacylglycerols, sterol esters, and free fatty acids. Given these findings through a time-varied lipidome status, the present study provided valuable insights likely to be crucial to understand the cellular biology of the coral-Symbiodinium endosymbiosis.


Assuntos
Antozoários/microbiologia , Antozoários/fisiologia , Metabolismo dos Lipídeos/fisiologia , Animais , Antozoários/citologia , Ritmo Circadiano , Dinoflagellida/fisiologia , Gotículas Lipídicas , Simbiose/fisiologia
14.
PeerJ ; 5: e2996, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28243530

RESUMO

Acontia, located in the gastrovascular cavity of anemone, are thread-like tissue containing numerous stinging cells which serve as a unique defense tissue against predators of the immobile acontiarian sea anemone. Although its morphology and biological functions, such as defense and digestion, have been studied, the defense behavior and the specific events of acontia ejection and retraction are unclear. The aim of this study is to observe and record the detailed process of acontia control in anemones. Observations reveal that the anemone, Exaiptasia pallida, possibly controls a network of body muscles and manipulates water pressure in the gastrovascular cavity to eject and retract acontia. Instead of resynthesizing acontia after each ejection, the retraction and reuse of acontia enables the anemone to respond quickly at any given time, thus increasing its overall survivability. Since the Exaiptasia anemone is an emerging model for coral biology, this study provides a foundation to further investigate the biophysics, neuroscience, and defense biology of this marine model organism.

15.
Sci Rep ; 7: 40246, 2017 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-28074857

RESUMO

Hepatitis B virus X protein (HBx) plays important roles in viral replication and the development of hepatocellular carcinoma. HBx is a rapid turnover protein and ubiquitin-proteasome pathway has been suggested to influence HBx stability as treatment with proteasome inhibitors increases the levels of HBx protein and causes accumulation of the polyubiquitinated forms of HBx. Deubiquitinases (DUBs) are known to act by removing ubiquitin moieties from proteins and thereby reverse their stability and/or activity. However, no information is available regarding the involvement of DUBs in regulation of ubiquitylation-dependent proteasomal degradation of HBx protein. This study identified the deubiquitylating enzyme USP15 as a critical regulator of HBx protein level. USP15 was found to directly interact with HBx via binding to the HBx region between amino acid residues 51 and 80. USP15 increased HBx protein levels in a dose-dependent manner and siRNA-mediated knockdown of endogenous USP15 reduced HBx protein levels. Increased HBx stability and steady-state level by USP15 were attributable to reduced HBx ubiquitination and proteasomal degradation. Importantly, the transcriptional transactivation function of HBx is enhanced by overexpression of USP15. These results suggest that USP15 plays an essential role in stabilizing HBx and subsequently affects the biological function of HBx.


Assuntos
Transativadores/metabolismo , Ativação Transcricional , Proteases Específicas de Ubiquitina/metabolismo , Ubiquitinação , Linhagem Celular , Humanos , Proteínas Virais Reguladoras e Acessórias
16.
PeerJ ; 4: e2358, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27635330

RESUMO

Anemones of genus Exaiptasia are used as model organisms for the study of cnidarian-dinoflagellate (genus Symbiodinium) endosymbiosis. However, while most reef-building corals harbor Symbiodinium of clade C, Exaiptasia spp. anemones mainly harbor clade B Symbiodinium (ITS2 type B1) populations. In this study, we reveal for the first time that bleached Exaiptasia pallida anemones can establish a symbiotic relationship with a clade C Symbiodinium (ITS2 type C1). We further found that anemones can transmit the exogenously supplied clade C Symbiodinium cells to their offspring by asexual reproduction (pedal laceration). In order to corroborate the establishment of stable symbiosis, we used microscopic techniques and genetic analyses to examine several generations of anemones, and the results of these endeavors confirmed the sustainability of the system. These findings provide a framework for understanding the differences in infection dynamics between homologous and heterologous dinoflagellate types using a model anemone infection system.

17.
J Virol ; 90(4): 1729-40, 2016 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-26637457

RESUMO

UNLABELLED: Hepatitis B virus (HBV) has been implicated as a potential trigger of hepatic steatosis although molecular mechanisms involved in the pathogenesis of HBV-associated hepatic steatosis still remain elusive. Our prior work has revealed that the expression level of liver fatty acid binding protein 1 (FABP1), a key regulator of hepatic lipid metabolism, was elevated in HBV-producing hepatoma cells. In this study, the effects of HBV X protein (HBx) mediated FABP1 regulation on hepatic steatosis and the underlying mechanism were determined. mRNA and protein levels of FABP1 were measured by quantitative RT-PCR (qPCR) and Western blotting. HBx-mediated FABP1 regulation was evaluated by luciferase assay, coimmunoprecipitation, and chromatin immunoprecipitation. Hepatic lipid accumulation was measured by using Oil-Red-O staining and the triglyceride level. It was found that expression of FABP1 was increased in HBV-producing hepatoma cells, the sera of HBV-infected patients, and the sera and liver tissues of HBV-transgenic mice. Ectopic overexpression of HBx resulted in upregulation of FABP1 in HBx-expressing hepatoma cells, whereas HBx abolishment reduced FABP1 expression. Mechanistically, HBx activated the FABP1 promoter in an HNF3ß-, C/EBPα-, and PPARα-dependent manner, in which HBx increased the gene expression of HNF3ß and physically interacted with C/EBPα and PPARα. On the other hand, knockdown of FABP1 remarkably blocked lipid accumulation both in long-chain free fatty acids treated HBx-expressing HepG2 cells and in a high-fat diet-fed HBx-transgenic mice. Therefore, FABP1 is a key driver gene in HBx-induced hepatic lipid accumulation via regulation of HNF3ß, C/EBPα, and PPARα. FABP1 may represent a novel target for treatment of HBV-associated hepatic steatosis. IMPORTANCE: Accumulating evidence from epidemiological and experimental studies has indicated that chronic HBV infection is associated with hepatic steatosis. However, the molecular mechanism underlying HBV-induced pathogenesis of hepatic steatosis still remains to be elucidated. In this study, we found that expression of liver fatty acid binding protein (FABP1) was dramatically increased in the sera of HBV-infected patients and in both sera and liver tissues of HBV-transgenic mice. Forced expression of HBx led to FABP1 upregulation, whereas knockdown of FABP1 remarkably diminished lipid accumulation in both in vitro and in vivo models. It is possible that HBx promotes hepatic lipid accumulation through upregulating FABP1 in the development of HBV-induced nonalcoholic fatty liver disease. Therefore, inhibition of FABP1 might have therapeutic value in steatosis-associated chronic HBV infection.


Assuntos
Proteínas de Ligação a Ácido Graxo/biossíntese , Fígado Gorduroso/patologia , Fígado Gorduroso/virologia , Hepatite B/complicações , Hepatite B/patologia , Interações Hospedeiro-Patógeno , Transativadores/metabolismo , Animais , Fusão Gênica Artificial , Western Blotting , Modelos Animais de Doenças , Proteínas de Ligação a Ácido Graxo/genética , Perfilação da Expressão Gênica , Genes Reporter , Células Hep G2 , Hepatócitos/patologia , Hepatócitos/virologia , Humanos , Imunoprecipitação , Luciferases/análise , Luciferases/genética , Masculino , Camundongos Transgênicos , Reação em Cadeia da Polimerase em Tempo Real , Proteínas Virais Reguladoras e Acessórias
18.
PLoS One ; 10(7): e0132519, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26218797

RESUMO

The lipid body (LB) formation in the host coral gastrodermal cell cytoplasm is a hallmark of the coral-Symbiodinium endosymbiosis, and such lipid-based entities are not found in endosymbiont-free cnidarian cells. Therefore, the elucidation of lipogenesis regulation in LBs and how it is related to the lipid metabolism of the host and endosymbiont could provide direct insight to understand the symbiosis mechanism. Herein, the lipid composition of host cells of the stony coral Euphyllia glabrescens, as well as that of their cytoplasmic LBs and in hospite Symbiodinium populations, was examined by high performance liquid chromatography (HPLC) and gas chromatography/mass spectrometry (GC/MS), and six major lipid species were identified: wax esters, sterol esters, triacylglycerols, cholesterols, free fatty acids, and phospholipids. Their concentrations differed significantly between host coral cells, LBs, and Symbiodinium, suggesting compartmental regulation. WE were only present in the host coral and were particularly highly concentrated in LBs. Amongst the four species of WE, the monoene R = C18:1/R = C16 was found to be LB-specific and was not present in the host gastrodermal cell cytoplasm. Furthermore, the acyl pool profiles of the individual LB lipid species were more similar, but not equal to, those of the host gastrodermal cells in which they were located, indicating partially autonomous lipid metabolism in these LBs. Nevertheless, given the overall similarity in the host gastrodermal cell and LB lipid profiles, these data suggest that a significant portion of the LB lipids may be of host coral origin. Finally, lipid profiles of the in hospite Symbiodinium populations were significantly distinct from those of the cultured Symbiodinium, potentially suggesting a host regulation effect that may be fundamental to lipid metabolism in endosymbiotic associations involving clade C Symbiodinium.


Assuntos
Antozoários/metabolismo , Antozoários/microbiologia , Dinoflagellida/metabolismo , Metabolismo dos Lipídeos/fisiologia , Simbiose/fisiologia , Animais
19.
Biochimie ; 112: 1-9, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25726912

RESUMO

Apolipoprotein F (ApoF) inhibits cholesteryl ester transfer protein (CETP) activity and plays an important role in lipid metabolism. In the present study, the full-length human ApoF promoter was cloned, and the molecular mechanism of the regulation of ApoF was investigated. The ApoF promoter displayed higher activities in hepatoma cell lines, and the -198 nt to +79 nt promoter region contained the maximum promoter activity. In the promoter region of -198 nt to -2 nt there were four putative binding sites for transcription factors ETS-1/ETS-2 (named EBS-1 to EBS-4) and one for C/EBP. Mutation of EBS-2, EBS4 and the C/EBP binding site abolished the promoter activity, and ETS-1/ETS-2 and C/EBPα could interact with corresponding binding sites. In addition, overexpression of ETS-1/2 or C/EBPα enhanced, while dominant-negative mutants of ETS-1/2 and knockdown of C/EBPα decreased, ApoF promoter activities. ETS-1 and C/EBPα associated physically, and acted synergistically to activate ApoF transcription. These results demonstrated combined activation of the ApoF promoter by liver-enriched and ubiquitous transcription factors. Direct interactions between C/EBPα and ETS-1 were important for high liver-specific expression of ApoF.


Assuntos
Apolipoproteínas/biossíntese , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Proteína Proto-Oncogênica c-ets-1/metabolismo , Proteína Proto-Oncogênica c-ets-2/metabolismo , Transcrição Gênica , Apolipoproteínas/genética , Proteínas Estimuladoras de Ligação a CCAAT/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Proteína Proto-Oncogênica c-ets-1/genética , Proteína Proto-Oncogênica c-ets-2/genética , Elementos de Resposta
20.
Virus Res ; 195: 236-45, 2015 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-25449573

RESUMO

Hepatitis B virus X protein (HBx) transactivates multiple transcription factors including nuclear factor-kappa B (NF-κB) that regulates inflammatory-related genes. However, the regulatory mechanism of HBx in NF-κB activation remains largely unknown. This study reports that HBx augments the interleukin-1ß (IL-1ß)-induced NF-κB activation via interaction with a Toll-like receptor (TLR) adapter protein, ECSIT (evolutionarily conserved signaling intermediate in Toll pathways). GST pull-down and co-immunoprecipitation analyses showed that HBx interacted with ECSIT. Deletion analysis of HBx in a CytoTrap two-hybrid system revealed that the interaction region of HBx for ECSIT was attributed to aa 51-80. Co-transfection of HBx and ECSIT in IL-1ß-stimulated cells appeared to activate IKK and IκB signaling pathway as phosphorylation of both IKK α/ß and IκBα was increased whereas knockdown of ECSIT or HBxΔ51-80 mutant attenuated the phosphorylation. As a consequence of IκBα degradation, NF-κB was activated as evidenced by increases in NF-κB transcriptional activity and the nuclear translocation of p65 and p50 that resulted in the induction of IL-10. In contrast, knockdown of ECSIT by siRNA or treatment with an NF-κB selective inhibitor (helenalin) abolished the NF-κB activation and IL-10 expression. We conclude that ECSIT appears to be a novel HBx-interacting signal molecule and their interaction is mechanistically important in IL-1ß induction of NF-κB activation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Vírus da Hepatite B/imunologia , Interações Hospedeiro-Patógeno , Interleucina-1beta/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais , Transativadores/metabolismo , Linhagem Celular , Análise Mutacional de DNA , Humanos , Ligação Proteica , Mapeamento de Interação de Proteínas , Técnicas do Sistema de Duplo-Híbrido , Proteínas Virais Reguladoras e Acessórias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...