Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
J Am Chem Soc ; 146(23): 16010-16019, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38805019

RESUMO

Flash Joule heating has emerged as an ultrafast, scalable, and versatile synthesis method for nanomaterials, such as graphene. Here, we experimentally and theoretically deconvolute the contributions of thermal and electrical processes to the synthesis of graphene by flash Joule heating. While traditional methods of graphene synthesis involve purely chemical or thermal driving forces, our results show that the presence of charge and the resulting electric field in a graphene precursor catalyze the formation of graphene. Furthermore, modulation of the current or the pulse width affords the ability to control the three-step phase transition of the material from amorphous carbon to turbostratic graphene and finally to ordered (AB and ABC-stacked) graphene and graphite. Finally, density functional theory simulations reveal that the presence of a charge- and current-induced electric field inside the graphene precursor facilitates phase transition by lowering the activation energy of the reaction. These results demonstrate that the passage of electrical current through a solid sample can directly drive nanocrystal nucleation in flash Joule heating, an insight that may inform future Joule heating or other electrical synthesis strategies.

2.
Adv Mater ; 36(15): e2309956, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38305742

RESUMO

Nanoscale metallic glasses offer opportunities for investigating fundamental properties of amorphous solids and technological applications in biomedicine, microengineering, and catalysis. However, their top-down fabrication is limited by bulk counterpart availability, and bottom-up synthesis remains underexplored due to strict formation conditions. Here, a kinetically controlled flash carbothermic reaction is developed, featuring ultrafast heating (>105 K s-1) and cooling rates (>104 K s-1), for synthesizing metallic glass nanoparticles within milliseconds. Nine compositional permutations of noble metals, base metals, and metalloid (M1─M2─P, M1 = Pt/Pd, M2 = Cu/Ni/Fe/Co/Sn) are synthesized with widely tunable particle sizes and substrates. Through combinatorial development, a substantially expanded composition space for nanoscale metallic glass is discovered compared to bulk counterpart, revealing that the nanosize effect enhances glass forming ability. Leveraging this, several nanoscale metallic glasses are synthesized with composition that have never, to the knowledge, been synthesized in bulk. The metallic glass nanoparticles exhibit high activity in heterogeneous catalysis, outperforming crystalline metal alloy nanoparticles.

3.
Small ; 20(8): e2307342, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37821410

RESUMO

Solid-state batteries (SSBs) are poised to replace traditional organic liquid-electrolyte lithium-ion batteries due to their higher safety and energy density. Oxide-based solid electrolytes (SEs) are particularly attractive for their stability in air and inability to ignite during thermal runaway. However, achieving high-performance in oxide-based SSBs requires the development of an intimate and robust SE-cathode interface to overcome typically large interfacial resistances. The transition interphase should be both physically and chemically active. This study presents a thin, conductive interphase constructed between lithium aluminum titanium phosphate and lithium cobalt oxide using a rapid sintering method that modifies the interphase within 10 s. The rapid heating and cooling rates restrict side reactions and interdiffusion on the interface. SSBs with thick composite cathodes demonstrate a high initial capacity of ≈120 mAh g-1 over 200 cycles at room temperature. Furthermore, the rapid sintering method can be extended to other cathode systems under similar conditions. These findings highlight the importance of constructing an appropriate SE-cathode interface and provide insight into designing practical SSBs.

4.
Small Methods ; 8(3): e2301144, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38009769

RESUMO

The flash Joule heating (FJH) method converts many carbon feedstocks into graphene in milliseconds to seconds using an electrical pulse. This opens an opportunity for processing low or negative value resources, such as coal and plastic waste, into high value graphene. Here, a lab-scale automation FJH system that allows the synthesis of 1.1 kg of turbostratic flash graphene from coal-based metallurgical coke (MC) in 1.5 h is demonstrated. The process is based on the automated conversion of 5.7 g of MC per batch using an electrical pulse width modulation system to conduct the bottom-up upcycle of MC into flash graphene. This study then compare this method to two other scalable graphene synthesis techniques by both a life cycle assessment and a technoeconomic assessment.

5.
Adv Mater ; 36(10): e2211239, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36940058

RESUMO

Carbon-based superoxide dismutase (SOD) mimetic nanozymes have recently been employed as promising antioxidant nanotherapeutics due to their distinct properties. The structural features responsible for the efficacy of these nanomaterials as antioxidants are, however, poorly understood. Here, the process-structure-property-performance properties of coconut-derived oxidized activated charcoal (cOAC) nano-SOD mimetics are studied by analyzing how modifications to the nanomaterial's synthesis impact the size, as well as the elemental and electrochemical properties of the particles. These properties are then correlated to the in vitro antioxidant bioactivity of poly(ethylene glycol)-functionalized cOACs (PEG-cOAC). Chemical oxidative treatment methods that afford smaller, more homogeneous cOAC nanoparticles with higher levels of quinone functionalization show enhanced protection against oxidative damage in bEnd.3 murine endothelioma cells. In an in vivo rat model of mild traumatic brain injury (mTBI) and oxidative vascular injury, PEG-cOACs restore cerebral perfusion rapidly to the same extent as the former nanotube-derived PEG-hydrophilic carbon clusters (PEG-HCCs) with a single intravenous injection. These findings provide a deeper understanding of how carbon nanozyme syntheses can be tailored for improved antioxidant bioactivity, and set the stage for translation of medical applications.


Assuntos
Antioxidantes , Lesões Encefálicas Traumáticas , Clorambucila/análogos & derivados , Ácidos Oleicos , Ratos , Camundongos , Animais , Antioxidantes/farmacologia , Antioxidantes/química , Carvão Vegetal/farmacologia , Carbono/química , Superóxido Dismutase/química , Lesões Encefálicas Traumáticas/tratamento farmacológico
6.
Sci Adv ; 9(39): eadh5131, 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37756404

RESUMO

The staggering accumulation of end-of-life lithium-ion batteries (LIBs) and the growing scarcity of battery metal sources have triggered an urgent call for an effective recycling strategy. However, it is challenging to reclaim these metals with both high efficiency and low environmental footprint. We use here a pulsed dc flash Joule heating (FJH) strategy that heats the black mass, the combined anode and cathode, to >2100 kelvin within seconds, leading to ~1000-fold increase in subsequent leaching kinetics. There are high recovery yields of all the battery metals, regardless of their chemistries, using even diluted acids like 0.01 M HCl, thereby lessening the secondary waste stream. The ultrafast high temperature achieves thermal decomposition of the passivated solid electrolyte interphase and valence state reduction of the hard-to-dissolve metal compounds while mitigating diffusional loss of volatile metals. Life cycle analysis versus present recycling methods shows that FJH significantly reduces the environmental footprint of spent LIB processing while turning it into an economically attractive process.

7.
Adv Mater ; 35(48): e2306763, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37694496

RESUMO

Hydrogen gas (H2 ) is the primary storable fuel for pollution-free energy production, with over 90 million tonnes used globally per year. More than 95% of H2 is synthesized through metal-catalyzed steam methane reforming that produces 11 tonnes of carbon dioxide (CO2 ) per tonne H2 . "Green H2 " from water electrolysis using renewable energy evolves no CO2 , but costs 2-3× more, making it presently economically unviable. Here catalyst-free conversion of waste plastic into clean H2 along with high purity graphene is reported. The scalable procedure evolves no CO2 when deconstructing polyolefins and produces H2 in purities up to 94% at high mass yields. The sale of graphene byproduct at just 5% of its current value yields H2 production at a negative cost. Life-cycle assessment demonstrates a 39-84% reduction in emissions compared to other H2 production methods, suggesting the flash H2 process to be an economically viable, clean H2 production route.

8.
ACS Appl Mater Interfaces ; 15(26): 31711-31719, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37339110

RESUMO

Mn-based cation-disordered rocksalt oxides (Mn-DRX) are emerging as promising cathode materials for next-generation Li-ion batteries due to their high specific capacities and cobalt- and nickel-free characteristic. However, to reach the usable capacity, solid-state synthesized Mn-DRX materials require activation via postsynthetic ball milling, typically incorporating more than 20 wt % conductive carbon that adversely reduces the electrode-level gravimetric capacity. To address this issue, we first deposit amorphous carbon on the surface of the Li1.2Mn0.4Ti0.4O2 (LMTO) particles to increase the electrical conductivity by 5 orders of magnitude. Although the cathode material gravimetric first charge capacity reaches 180 mAh/g, its highly irreversible behavior leads to a first discharge capacity of 70 mAh/g. Subsequently, to ensure a good electrical percolation network, the LMTO material is ball-milled with a multiwall carbon nanotube (CNT) to obtain a 78.7 wt % LMTO active material loading in the cathode electrode (LMTO-CNT). As a result, a 210 mAh/g cathode electrode gravimetric first charge and 165 mAh/g first discharge capacity values are obtained, compared to the respective capacity values of 222 and 155 mAh/g for the LMTO material ball-milled with 20 wt % SuperP C65 electrode (LMTO-SP). After 50 cycles, LMTO-CNT delivers a 121 mAh/g electrode gravimetric discharge capacity, largely outperforming the value of 44 mAh/g of LMTO-SP. Our study demonstrates that while ball milling is necessary to achieve a significant amount of capacity of LMTO, a careful selection of additives, such as CNT, effectively reduces the required carbon quantity to achieve a higher electrode gravimetric discharge capacity.

9.
Eye Contact Lens ; 49(6): 234-240, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36989487

RESUMO

OBJECTIVES: To determine and compare the repeatability and reproducibility of anterior scleral parameters measured by the corneoscleral profile (CSP) module of Pentacam in keratoconus (KC) and control eyes. METHODS: This is a prospective observational study. Thirty KC participants (30 eyes) and 24 control participants (24 eyes) were examined three times using the CSP. Sagittal height mean (SHM), sagittal height astigmatism (SHA), and mean bulbar slope (BSM) were measured in 12 mm and 16 mm chord lengths. The repeatability and reproducibility of these measurements were also assessed. Coefficients of variation (CoV), intraclass correlation coefficient (ICC), coefficient of repeatability (CoR1), and coefficient of reproducibility (CoR2) were adopted to assess the reliability. RESULTS: In the KC and control groups, SHM showed high repeatability and reproducibility (coefficients of variation [CoVs]≤0.96%, intraclass correlation coefficient [ICCs]≥0.97), and SHM of control eyes showed higher repeatability and reproducibility than that of KC eyes at 12 mm chord length (KC group, CoRs ranged from 35.56 µm to 43.52 µm, control group, ranged from 23.50 µm to 30.31 µm) and 16 mm chord length (KC group, CoRs ranged from 79.54 µm to 81.58 µm, control group, ranged from 48.25 µm to 66.10 µm). Mean bulbar slope also showed high repeatability and reproducibility (CoVs≤3.65%, CoRs≤2.64). Furthermore, the SHA of control eyes showed higher repeatability and reproducibility when compared with KC eyes (control group: CoVs≤29.95%, KC group: CoVs≥32.67%). CONCLUSIONS: Keratoconus and control eyes demonstrated high repeatability and reproducibility when using CSP measurements, which may prove helpful in fitting contact lenses.


Assuntos
Astigmatismo , Ceratocone , Humanos , Ceratocone/diagnóstico , Reprodutibilidade dos Testes , Topografia da Córnea/métodos , Córnea
10.
ACS Nano ; 17(3): 2506-2516, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36693241

RESUMO

Hybrid carbon nanomaterials, such as those that incorporate carbon nanotubes into graphene sheets, have been found to display interesting mechanical and electrical properties because of their covalent bonding and π-π stacking domains. However, synthesis of these hybrid materials is limited by the high energetic cost of techniques like chemical vapor deposition. Here, we demonstrate the solvent- and gas-free synthesis of a 2D carbon nanotube/graphene network through flash Joule heating of pristine carbon nanotubes. The relative proportion of each morphology in the hybrid material can be tuned by varying the pulse time, as confirmed by Raman spectroscopy and microscopy. Triboindentation of epoxy composites made with the hybrid material shows increases of 162% and 64% to the hardness and Young's modulus, respectively, compared with the neat epoxy. These results demonstrate that flash Joule heating can be used to inexpensively convert carbon nanotubes into a hybrid network of nanotubes and graphene for use as an effective reinforcing additive in epoxy composites.

11.
Adv Mater ; 35(16): e2209621, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36694364

RESUMO

Graphitic 1D and hybrid nanomaterials represent a powerful solution in composite and electronic applications due to exceptional properties, but large-scale synthesis of hybrid materials has yet to be realized. Here, a rapid, scalable method to produce graphitic 1D materials from polymers using flash Joule heating (FJH) is reported. This avoids lengthy chemical vapor deposition and uses no solvent or water. The flash 1D materials (F1DM), synthesized using a variety of earth-abundant catalysts, have controllable diameters and morphologies by parameter tuning. Furthermore, the process can be modified to form hybrid materials, with F1DM bonded to turbostratic graphene. In nanocomposites, F1DM outperform commercially available carbon nanotubes. Compared to current 1D material synthetic strategies using life cycle assessment, FJH synthesis represents an 86-92% decrease in cumulative energy demand and 92-94% decrease in global-warming potential. This work suggests that FJH affords a cost-effective and sustainable route to upcycle waste plastic into valuable 1D and hybrid nanomaterials.

12.
Adv Mater ; 35(8): e2207303, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36462512

RESUMO

The ever-increasing production of commercial lithium-ion batteries (LIBs) will result in a staggering accumulation of waste when they reach their end of life. A closed-loop solution, with effective recycling of spent LIBs, will lessen both the environmental impacts and economic cost of their use. Presently, <5% of spent LIBs are recycled and the regeneration of graphite anodes has, unfortunately, been mostly overlooked despite the considerable cost of battery-grade graphite. Here, an ultrafast flash recycling method to regenerate the graphite anode is developed and valuable battery metal resources are recovered. Selective Joule heating is applied for only seconds to efficiently decompose the resistive impurities. The generated inorganic salts, including lithium, cobalt, nickel, and manganese, can be easily recollected from the flashed anode waste using diluted acid, specifically 0.1 m HCl. The flash-recycled anode preserves the graphite structure and is coated with a solid-electrolyte-interphase-derived carbon shell, contributing to high initial specific capacity, superior rate performance, and cycling stability, when compared to anode materials recycled using a high-temperature-calcination method. Life-cycle-analysis relative to current graphite production and recycling methods indicate that flash recycling can significantly reduce the total energy consumption and greenhouse gas emission while turning anode recycling into an economically advantageous process.

13.
Front Pharmacol ; 13: 1053253, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36582539

RESUMO

Ischemic stroke (IS) has been associated with an impairment in glymphatic function. Xuefu Zhuyu Decoction (XFZYD) is widely used in the prevention and treatment of ischemic stroke. We hypothesized that Xuefu Zhuyu decoction pretreatment could attenuate early neurological deficits after ischemic stroke by enhancing the function of the glymphatic system. To prove our hypothesis, we carried out temporary middle cerebral artery occlusion and reperfusion surgery on C57BL/6 mice and then measured neurological score, infarct size and performed hematoxylin-eosin staining to assess stroke outcomes after 24 h of reperfusion. Subsequently, we injected fluorescent tracers in to the cisterna magna and evaluated tracer distribution in coronal brain sections. The polarization of aquaporin-4 (AQP4), colocalization of aquaporin-4, α-dystroglycan, ß-dystroglycan and agrin were determined by immunofluorescence. Our research showed that pretreatment with Xuefu Zhuyu decoction significantly alleviated neurological scores, neurological deficits and pathological abnormalities in a mouse model of ischemic stroke. Importantly, Xuefu Zhuyu decoction pretreatment enhanced cerebrospinal fluid influx, protected aquaporin-4 depolarization and promoted the colocalization of aquaporin-4 with its anchoring proteins in the brain. Our findings highlight novel mechanisms underlying the neuroprotective effect of Xuefu Zhuyu decoction pretreatment on ischemic stroke-induced brain damage through the glymphatic system. Xuefu Zhuyu decoction pretreatment may offer a promising approach to slow the onset and progression of ischemic stroke.

14.
ACS Appl Mater Interfaces ; 14(30): 35053-35063, 2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35862236

RESUMO

Superhydrophobic surfaces have gained sustained attention because of their extensive applications in the fields of self-cleaning, anti-icing, and drag reduction systems. Water droplets must have large apparent contact angle (CA) (>150°) and small CA hysteresis (<10°) on these surfaces. However, previous research usually involves complex fabrication strategies to modify the surface wettability. It is also challenging to maintain the temporal and mechanical stability of the delicate surface textures. Here, we develop a one-step solvent-free sand-in method to fabricate robust superhydrophobic surfaces directly atop various substrates with an apparent CA up to ∼163.8° and hysteresis less than 5°. The water repellency can withstand 100 Scotch tape peeling tests and remain stable after being stored under ambient humid conditions in Houston, Texas, for 18 months or being heated at 130 °C in air for 24 h. The superhydrophobic surfaces have excellent anti-icing ability, including a ∼2.6× longer water freezing time and ∼40% smaller ice adhesion strength with the temperature as low as -35 °C. Since the surface layers are fabricated by sanding the substrates with the powder additives, the surface damage can be repaired by a direct re-sanding treatment with the same powder additives. Further sand-in condition screenings broaden surface wettability from hydrophilic to superhydrophobic. The sand-in method induces the surface modification and the formation of the tribofilm. Surface and materials characterizations reveal that both microstructures and nanoscale asperities of the tribofilms contribute to the robust superhydrophobic features of sanded surfaces.

15.
Adv Mater ; 34(33): e2202666, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35748868

RESUMO

Turbostratic layers in 2D materials have an interlayer misalignment. The lack of alignment expands the intrinsic interlayer distances and weakens the optical and electronic interactions between adjacent layers. This introduces properties distinct from those structures with well-aligned lattices and strong coupling interactions. However, direct and rapid synthesis of turbostratic materials remains a challenge owing to their thermodynamically metastable properties. Here, a flash Joule heating (FJH) method to achieve bulk synthesis of boron-carbon-nitrogen ternary compounds with turbostratic structures by a kinetically controlled ultrafast cooling process that takes place within milliseconds (103  to 104 K s-1 ) is reported. Theoretical calculations support the existence of turbostratic structures and provide estimates of the energy barriers with respect to conversion into the corresponding well-aligned counterparts. When using non-carbon conductive additives, a direct synthesis of boron nitride is possible. The turbostratic nature facilitates mechanical exfoliation and more stable dispersions. Accordingly, the addition of flash products to a poly(vinyl alcohol) nanocomposite film coating a copper surface greatly improves the copper's resistance to corrosion in 0.5 m sulfuric acid or 3.5 wt% saline solution. FJH allows the use of bulk materials as reactants and provides a rapid approach to large quantities of the hitherto hard-to-access turbostratic materials.

16.
Adv Mater ; 34(31): e2202668, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35709635

RESUMO

Battery designs are swiftly changing from metal-ion to rechargeable metal batteries. Theoretically, metals can deliver maximum anode capacity and enable cells with improved energy density. In practice, these advantages are only possible if the parasitic surface reactions associated with metal anodes are controlled. These undesirable surface reactions are responsible for many troublesome issues, like dendrite formation and accelerated consumption of active materials, which leads to anodes with low cycle life or even battery runaway. Here, a facile and solvent-free brushing method is reported to convert powders into films atop Li and Na metal foils. Benefiting from the reactivity of Li metal with these powder films, surface energy can be effectively tuned, thereby preventing parasitic reaction. In-operando study of P2 S5 -modified Li anodes in liquid electrolyte cells reveals a smoother electrode contour and more uniform metal electrodeposition and dissolution behavior. The P2 S5 -modified Li anodes sustain ultralow polarization in symmetric cell for >4000 h, ≈8× longer than bare Li anodes. The capacity retention is ≈70% higher when P2 S5 -modified Li anodes are paired with a practical LiFePO4 cathode (≈3.2 mAh cm-2 ) after 340 cycles. Brush coating opens a promising avenue to fabricate large-scale artificial solid-electrolyte-interphase directly on metals without the need for organic solvent.

17.
Front Genet ; 13: 845967, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35571067

RESUMO

Objective: Hypomyelination with brain stem and spinal cord involvement and leg spasticity (HBSL) is a rare form of leukodystrophy presenting with varying clinical and imaging features. We report a case of HBSL to investigate the clinical and radiological characteristics of HBSL resulting from cytoplasmic aspartyl-tRNA synthetase gene (DARS) mutations. Subjects: We report a patient of HBSL with compound heterozygous mutations in DARS1. To study the potential genetic variations of the patient, targeted next-generation sequencing, whole-exome sequencing, and Sanger sequencing were used. We reviewed the clinical and radiological features of the patient. The literature was thoroughly evaluated. Results: The patient suffered from developmental regression associated with lower limbs spasticity, developmental delay, and paralysis of the lower limbs since childhood. Decreased T1 and increased T2 signals were observed on the bilateral basal, centrum ovale, frontal lobe, parietal lobe, and ganglia in cervical cord magnetic resonance imaging (MRI). The patient had two compound heterozygous mutations (NM_001349:c.1363T > C and NM_001349:c.821C > G) in the DARS1 gene. Conclusion: Two mutations in DARS1 were found to be associated with HBSL, one of them being reported for the first time. These findings can be valuable for diagnosing and providing genetic counseling to HBSL patients in the future.

18.
ACS Nano ; 16(5): 7804-7815, 2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35471012

RESUMO

High surface area varieties of graphene have captured significant attention, allowing for improved performance in a variety of applications. However, there are challenges facing the use of graphene in these applications since it is expensive and difficult to synthesize in bulk. Here, we leverage the capabilities of flash Joule heating to synthesize holey and wrinkled flash graphene (HWFG) in seconds from mixed plastic waste feedstocks, using in situ salt decomposition to produce and stabilize pore formation during the reaction. Surface areas as high as 874 m2 g-1 are obtained, with characteristics of micro-, meso-, and macroporosities. Raman spectroscopy confirms the wrinkled and turbostratic nature of the HWFG. We demonstrate HWFG applications in its use as a metal-free hydrogen evolution reaction electrocatalyst, with excellent stability, competitive overpotential, and Tafel slope; in a Li-metal battery anode allowing for stable and high discharge rates; and in a material with high gas adsorption. This represents an upcycle of mixed plastic waste, thereby affording a valuable route to address this pressing environmental pollutant concern.

19.
ACS Nano ; 16(5): 7284-7290, 2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35380424

RESUMO

Plastic waste (PW) and increasing atmospheric carbon dioxide (CO2) levels are among the top environmental concerns presently facing humankind. With an ambitious 2050 zero-CO2 emissions goal, there is a demand for economical CO2 capture routes. Here we show that the thermal treatment of PW in the presence of potassium acetate yields an effective carbon sorbent with pores width of 0.7-1.4 nm for CO2 capture. The PW to carbon sorbent process works with single or mixed streams of polyolefin plastics. The CO2 capacity of the sorbent at 25 °C is 17.0 ± 1.1 wt % (3.80 ± 0.25 mmol g-1) at 1 bar and 5.0 ± 0.6 wt % (1.13 ± 0.13 mmol g-1) at 0.15 bar, and it regenerates upon reaching 75 ± 5 °C. The CO2 capture cost from flue gas via this technology is estimated to be <$21 ton-1 CO2, much lower than competing CO2 capture technologies. Hence, this PW-derived carbon material should find utility in the capture of CO2 from point sources of high CO2 emissions while providing a use for otherwise deleterious PW.

20.
ACS Nano ; 16(4): 6646-6656, 2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35320673

RESUMO

Heteroatom doping can effectively tailor the local structures and electronic states of intrinsic two-dimensional materials, and endow them with modified optical, electrical, and mechanical properties. Recent studies have shown the feasibility of preparing doped graphene from graphene oxide and its derivatives via some post-treatments, including solid-state and solvothermal methods, but they require reactive and harsh reagents. However, direct synthesis of various heteroatom-doped graphene in larger quantities and high purity through bottom-up methods remains challenging. Here, we report catalyst-free and solvent-free direct synthesis of graphene doped with various heteroatoms in bulk via flash Joule heating (FJH). Seven types of heteroatom-doped flash graphene (FG) are synthesized through millisecond flashing, including single-element-doped FG (boron, nitrogen, oxygen, phosphorus, sulfur), two-element-co-doped FG (boron and nitrogen), as well as three-element-co-doped FG (boron, nitrogen, and sulfur). A variety of low-cost dopants, such as elements, oxides, and organic compounds are used. The graphene quality of heteroatom-doped FG is high, and similar to intrinsic FG, the material exhibits turbostraticity, increased interlayer spacing, and superior dispersibility. Electrochemical oxygen reduction reaction of different heteroatom-doped FG is tested, and sulfur-doped FG shows the best performance. Lithium metal battery tests demonstrate that nitrogen-doped FG exhibits a smaller nucleation overpotential compared to Cu or undoped FG. The electrical energy cost for the synthesis of heteroatom-doped FG synthesis is only 1.2 to 10.7 kJ g-1, which could render the FJH method suitable for low-cost mass production of heteroatom-doped graphene.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...