Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microb Ecol ; 87(1): 58, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38602532

RESUMO

Fungi play vital regulatory roles in terrestrial ecosystems. Local community assembly mechanisms, including deterministic and stochastic processes, as well as the size of regional species pools (gamma diversity), typically influence overall soil microbial community beta diversity patterns. However, there is limited evidence supporting their direct and indirect effects on beta diversity of different soil fungal functional groups in forest ecosystems. To address this gap, we collected 1606 soil samples from a 25-ha subtropical forest plot in southern China. Our goal was to determine the direct effects and indirect effects of regional species pools on the beta diversity of soil fungi, specifically arbuscular mycorrhizal (AM), ectomycorrhizal (EcM), plant-pathogenic, and saprotrophic fungi. We quantified the effects of soil properties, mycorrhizal tree abundances, and topographical factors on soil fungal diversity. The beta diversity of plant-pathogenic fungi was predominantly influenced by the size of the species pool. In contrast, the beta diversity of EcM fungi was primarily driven indirectly through community assembly processes. Neither of them had significant effects on the beta diversity of AM and saprotrophic fungi. Our results highlight that the direct and indirect effects of species pools on the beta diversity of soil functional groups of fungi can significantly differ even within a relatively small area. They also demonstrate the independent and combined effects of various factors in regulating the diversities of soil functional groups of fungi. Consequently, it is crucial to study the fungal community not only as a whole but also by considering different functional groups within the community.


Assuntos
Microbiota , Micorrizas , China , Florestas , Raios gama , Solo
2.
J Chromatogr A ; 1707: 464302, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37607430

RESUMO

Continuous manufacturing in monoclonal antibody production has generated increased interest due to its consistent quality, high productivity, high equipment utilization, and low cost. One of the major challenges in realizing continuous biological manufacturing lies in implementing continuous chromatography. Given the complex operation mode and various operation parameters, it is challenging to develop a continuous process. Due to the process parameters being mainly determined by the breakthrough curves and elution behaviors, chromatographic modeling has gradually been used to assist in process development and characterization. Model-assisted approaches could realize multi-parameter interaction investigation and multi-objective optimization by integrating continuous process models. These approaches could reduce time and resource consumption while achieving a comprehensive and systematic understanding of the process. This paper reviews the application of modeling tools in continuous chromatography process development, characterization and design. Model-assisted process development approaches for continuous capture and polishing steps are introduced and summarized. The challenges and potential of model-assisted process characterization are discussed, emphasizing the need for further research on the design space determination strategy and parameter robustness analysis method. Additionally, some model applications for process design were highlighted to promote the establishment of the process optimization and process simulation platform.


Assuntos
Anticorpos , Cromatografia , Comércio , Simulação por Computador
3.
Sensors (Basel) ; 18(12)2018 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-30562996

RESUMO

The anti-lock braking system (ABS) is an essential part in ensuring safe driving in vehicles. The Security of onboard safety systems is very important. In order to monitor the functions of ABS and avoid any malfunction, a model-based methodology with respect to structural analysis is employed in this paper to achieve an efficient fault detection and identification (FDI) system design. The analysis involves five essential steps of SA applied to ABS, which includes critical faults analysis, fault modelling, fault detectability analysis and fault isolability analysis, Minimal Structural Over-determined (MSO) sets selection, and MSO-based residual design. In terms of the four faults in the ABS, they are evaluated to be detectable through performing a structural representation and making the Dulmage-Mendelsohn decomposition with respect to the fault modelling, and then they are proved to be isolable based on the fault isolability matrix via SA. After that, four corresponding residuals are generated directly by a series of suggested equation combinations resulting from four MSO sets. The results generated by numerical simulations show that the proposed FDI system can detect and isolate all the injected faults, which is consistent with the theoretical analysis by SA, and also eventually validated by experimental testing on the vehicle (EcoCAR2) ABS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...