Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Beilstein J Org Chem ; 19: 901-908, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37377774

RESUMO

A SO2F2-mediated ring-opening cross-coupling of cyclobutanone oxime derivatives with alkenes was developed for the construction of a range of δ-olefin-containing aliphatic nitriles with (E)-configuration selectivity. This new method features wide substrate scope, mild conditions, and direct N-O activation.

2.
Appl Microbiol Biotechnol ; 105(21-22): 8469-8479, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34647135

RESUMO

Biofilms are heterogeneous structures composed of microorganisms and the surrounding extracellular polymeric substances (EPS) that protect the microbial cells from harsh environments. Saccharomyces boulardii is the first yeast classified as a probiotic strain with unique properties. However, tolerance of S. boulardii biofilms to harsh environments especially during production and in the gastrointestine remains unknown. In this study, S. boulardii cells were encapsulated in alginate microcapsules and subsequently cultured to form biofilms, and their survival and tolerance were evaluated. Microencapsulation provided S. boulardii a confined space that enhanced biofilm formation. The thick alginate shell and the mature biofilm improved the ability of S. boulardii to survive under harsh conditions. The exogenous encapsulation and the endogenous biofilm structure together enhanced the gastrointestinal tolerance and thermotolerance of S. boulardii. Besides, as the alginate shell became thinner with an increase in the subsequent culture duration, the EPS of S. boulardii biofilms exerted an important protective effect in resisting high temperatures. The encapsulated biofilm of S. boulardii after 24-h culture exhibited 60 × higher thermotolerance at 60 °C (10 min), while those after 6-h and 24-h culture showed 1000 × to 550,000 × higher thermotolerance at 120 °C (1 min) compared with the planktonic cells without encapsulation. The present study's findings suggest that a combination of encapsulation and biofilm mode efficiently enhanced gastrointestinal tolerance and thermotolerance of S. boulardii. KEY POINTS: • Encapsulated S. boulardii in biofilm mode showed enhanced tolerance. • Exogenous shell and endogenous biofilm provided dual protection to S. boulardii.


Assuntos
Probióticos , Saccharomyces boulardii , Biofilmes , Matriz Extracelular de Substâncias Poliméricas , Saccharomyces cerevisiae
3.
ACS Omega ; 5(47): 30603-30609, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33283109

RESUMO

Dissolved gas analysis (DGA) in transformer oil is a workable approach to evaluate the operation status of transformers. In this paper, we proposed a Cu-doped Se-vacancy MoSe2 (Cu-MoSe2) monolayer as a promising sensing material for DGA based on first-principles theory. Three typical dissolved gases, namely, CO, C2H2, and C2H4, are the representatives to investigate the potential of the Cu-MoSe2 monolayer upon their adsorption and sensing. Our results indicate that Cu-doping causes strong n-doping for the Se-vacancy MoSe2 monolayer, and the Cu-MoSe2 monolayer exhibits strong chemisorption the three gas molecules, with a calculated adsorption energy (E ad) of -1.25, -1.06, and -1.16 eV, respectively. Such strong interactions lead to remarkable changes in the electrical conductivity of the Cu-MoSe2 monolayer, allowing its application as a resistance-type sensor. Besides, work function (WF) analysis shows the potential of the Cu-MoSe2 monolayer as a promising field-effect transistor sensor as well. It is our hope that our work can stimulate more leading-edge studies of the TM-doped MoSe2 monolayer for sensing applications in many fields.

4.
Front Mol Biosci ; 7: 569414, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33195415

RESUMO

BACKGROUND: Coronavirus disease 2019 (COVID-19) was first detected in patients with pneumonia in December 2019 in China and it spread rapidly to the rest of the world becoming a global pandemic. Several observational studies have reported that cancer is a risk factor for COVID-19. On the other hand, ACE2, a receptor for the SARS-CoV-2 virus, was found to be aberrantly expressed in many tumors. However, the characterization of aberrant ACE2 expression in malignant tumors has not been elucidated. Here, we conducted a systematic analysis of the ACE2 expression profile across 31 types of tumors. METHODS: Distribution of ACE2 expression was analyzed using the GTEx, CCLE, TCGA pan-cancer databases. We evaluated the effect of ACE2 on clinical prognosis using the Kaplan-Meier survival plot and COX regression analysis. Correlation between ACE2 and immune infiltration levels was investigated in various cancer types. Additionally, the correlation between ACE2 and immune neoantigen, TMB, microsatellite instability, Mismatch Repair Genes (MMRs), HLA gene members, and DNA Methyltransferase (DNMT) was investigated. The frequency of ACE2 gene mutation in various tumors was analyzed. Functional enrichment analysis was conducted in various cancer types using the GSEA method. RESULTS: In normal tissues, ACE2 was highly expressed in almost all 31 organs tested. In cancer cell lines, the expression level of ACE2 was low to medium. Although aberrant expression was observed in most cancer types, high expression of ACE2 was not linked to OS, DFS, RFS, and DFI in most tumors in TCGA pan-cancer data. We found that ACE2 expression was significantly correlated with the infiltrating levels of macrophages and dendritic cells, CD4+ T cells, CD8+ T cells, and B cells in multiple tumors. A positive correlation between ACE2 expression and immune neoantigen, TMB, and microsatellite instability was found in multiple cancers. GSEA analysis which was carried out to determine the effect of ACE2 on tumors indicated that several cancer-associated pathways and immune-related pathways were hyperactivated in the high ACE2 expression group of most tumors. CONCLUSION: These findings suggest that ACE2 is not correlated with prognosis in most cancer types. However, elevated ACE2 is significantly correlated with immune infiltrating levels, including those of CD8+ T cells, CD4+ T cells, macrophages, neutrophils, and DCs in multiple cancers, especially in lung and breast cancer patients. These findings suggest that ACE2 may affect the tumor environment in cancer patients with COVID-19.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...