Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Data ; 11(1): 603, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849391

RESUMO

Laboratory-scale experiments are one of the most important means to explore the evolution of air-water interfaces and the mechanisms of pressure oscillations in pipelines during rapid filling and emptying processes. This study presents a dataset obtained from the experimental results of the flow behaviours during the pressure-gradient-driven filling and emptying processes of a large-scale pipeline. Based on these data, it is possible to study the evolution of the water-air and air-water interfaces and their breaking during pipe filling and emptying. The experimental equipment includes a variety of components (such as tanks, valves, bends, pipes of different materials and diameters, anchors, supports and water basin) and the operation procedures are rather complex. The flow behaviours are measured by various instruments; hence a thorough hydrodynamic analysis is possible. All these features and data frameworks make the current study particularly useful as a test case for real rapid filling and emptying processes and syphoning.

2.
Sheng Wu Gong Cheng Xue Bao ; 40(4): 1237-1250, 2024 Apr 25.
Artigo em Chinês | MEDLINE | ID: mdl-38658160

RESUMO

The CRISPR/Cas9 gene editing technology has proven to be valuable in crop breeding applications. Understanding and mastering this technology will provide a strong foundation for students majoring in biology, agronomy, and related fields to engage in scientific research and work. To incorporate CRISPR/Cas9 technology into experimental teaching courses at colleges, an innovative teaching experiment entitled "Enhancing the resistance of rice plants to bacterial blight disease using CRISPR/Cas9 technology" was designed. The experiment allows students to deepen their understanding of the basic principles of CRISPR/Cas technology, acquire proficiency in its protocol, and learn to apply the technology for targeted molecular breeding of rice. It not only expands students' knowledge and skills, but also promotes the reform and innovation of experimental teaching methods.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Oryza , Melhoramento Vegetal , Oryza/genética , Edição de Genes/métodos , Ensino , Resistência à Doença/genética , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Plantas Geneticamente Modificadas/genética
3.
Front Plant Sci ; 15: 1365989, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38633460

RESUMO

Bacterial blight (BB), caused by Xanthomonas oryzae pv. oryzae (Xoo), is a widespread and destructive disease in rice production. Previously, we cloned an executor R gene, Xa7, which confers durable and broad-spectrum resistance to BB. Here, we further confirmed that the transcription activator-like effector (TALE) AvrXa7 in Xoo strains could directly bind to the effector-binding element (EBE) in the promoter of the Xa7 gene. Other executor R genes (Xa7, Xa10, Xa23, and Xa27) driven by the promoter of the Xa7 gene could be activated by AvrXa7 and trigger the hypersensitive response (HR) in tobacco leaves. When the expression of the Xa23 gene was driven by the Xa7 promoter, the transgenic rice plants displayed a similar resistance spectrum as the Xa7 gene, demonstrating that the disease resistance characteristics of executor R genes are mainly determined by their induction patterns. Xa7 gene is induced locally by Xoo in the infected leaves, and its induction not only inhibited the growth of incompatible strains but also enhanced the resistance of rice plants to compatible strains, which overcame the shortcomings of its race-specific resistance. Transcriptome analysis of the Xa7 gene constitutive expression in rice plants displayed that Xa7-mediated disease resistance was related to the biosynthesis of lignin and thus enhanced resistance to Xoo. Overall, our results provided novel insights and important resources for further clarifying the molecular mechanisms of the executor R genes.

4.
Int J Mol Sci ; 25(3)2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38339152

RESUMO

Calcium (Ca2+) is a versatile intracellular second messenger that regulates several signaling pathways involved in growth, development, stress tolerance, and immune response in plants. Autoinhibited Ca2+-ATPases (ACAs) play an important role in the regulation of cellular Ca2+ homeostasis. Here, we systematically analyzed the putative OsACA family members in rice, and according to the phylogenetic tree of OsACAs, OsACA9 was clustered into a separated branch in which its homologous gene in Arabidopsis thaliana was reported to be involved in defense response. When the OsACA9 gene was knocked out by CRISPR/Cas9, significant accumulation of reactive oxygen species (ROS) was detected in the mutant lines. Meanwhile, the OsACA9 knock out lines showed enhanced disease resistance to both rice bacterial blight (BB) and bacterial leaf streak (BLS). In addition, compared to the wild-type (WT), the mutant lines displayed an early leaf senescence phenotype, and the agronomy traits of their plant height, panicle length, and grain yield were significantly decreased. Transcriptome analysis by RNA-Seq showed that the differentially expressed genes (DEGs) between WT and the Osaca9 mutant were mainly enriched in basal immune pathways and antibacterial metabolite synthesis pathways. Among them, multiple genes related to rice disease resistance, receptor-like cytoplasmic kinases (RLCKs) and cell wall-associated kinases (WAKs) genes were upregulated. Our results suggest that the Ca2+-ATPase OsACA9 may trigger oxidative burst in response to various pathogens and synergically regulate disease resistance and leaf senescence in rice.


Assuntos
Resistência à Doença , Oryza , Resistência à Doença/genética , Adenosina Trifosfatases/metabolismo , Oryza/metabolismo , Senescência Vegetal , Filogenia , Regulação da Expressão Gênica de Plantas , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo
5.
Sheng Wu Gong Cheng Xue Bao ; 40(1): 104-121, 2024 Jan 25.
Artigo em Chinês | MEDLINE | ID: mdl-38258635

RESUMO

YABBY proteins are important transcription factors that regulate morphogenesis and organ development in plants. In order to study the YABBY of strawberry, bioinformatic technique were used to identify the YABBY gene families in Fragaria vesca (diploid) and Fragaria×ananassa (octoploid), and then analyze the sequence characters, phylogeny and collinearity of the family members. The RNA-seq data and the quantitative reverse transcription-polymerase chain reaction (qRT-PCR) technique were used to assay the expression patterns of the family members. A green fluorescent protein (GFP) was fused with FvYABBYs and transiently expressed in tobacco leaf cells for the subcellular localization. As the results, six FvYABBY genes and 26 FxaYABBY genes were identified from F. vesca and F.×ananassa, respectively. The FvYABBY genes were grouped into five clades, and five family members were orthologous with AtYABBY genes of Arabidopsis. In F. vesca, all of the FvYABBYs were basically not expressed not expressed in root and receptacle, while FvYABBY1, FvYABBY2, FvYABBY5 and FvYABBY6 were highly expressed in leaf, shoot, flower and achene. In F.×ananassa, FxaYABBY1, FxaYABBY2, FxaYABBY5 and FxaYABBY6 were expressed in achene, and all FxaYABBY were poorly or not expressed in receptacle. Additionally, under the abiotic stresses of low temperature, high salt and drought, the expression of FvYABBY1, FvYABBY3, FvYABBY4 and FvYABBY6 were down-regulated, FvYABBY5 was up-regulated, and FvYABBY2 was up-regulated and then down-regulated. In tobacco leaf cells, the subcellular localization of FvYABBY proteins were in the nucleus. These results provides a foundation for the functional researches of YABBY gene in strawberry.


Assuntos
Arabidopsis , Fragaria , Fragaria/genética , Bioensaio , Temperatura Baixa , Biologia Computacional
6.
BMC Genomics ; 24(1): 795, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38129780

RESUMO

BACKGROUND: GDSL esterase/lipases (GELPs) play important roles in plant growth, development, and response to biotic and abiotic stresses. Presently, an extensive and in-depth analysis of GELP family genes in cotton is still not clear enough, which greatly limits the further understanding of cotton GELP function and regulatory mechanism. RESULTS: A total of 389 GELP family genes were identified in three cotton species of Gossypium hirsutum (193), G. arboreum (97), and G. raimondii (99). These GELPs could be classified into three groups and eight subgroups, with the GELPs in same group to have similar gene structures and conserved motifs. Evolutionary event analysis showed that the GELP family genes tend to be diversified at the spatial dimension and certain conservative at the time dimension, with a trend of potential continuous expansion in the future. The orthologous or paralogous GELPs among different genomes/subgenomes indicated the inheritance from genome-wide duplication during polyploidization, and the paralogous GELPs were derived from chromosomal segment duplication or tandem replication. GELP genes in the A/D subgenome underwent at least three large-scale replication events in the evolutionary process during the period of 0.6-3.2 MYA, with two large-scale evolutionary events between 0.6-1.8 MYA that were associated with tetraploidization, and the large-scale duplication between 2.6-9.1 MYA that occurred during diploidization. The cotton GELPs indicated diverse expression patterns in tissue development, ovule and fiber growth, and in response to biotic and abiotic stresses, combining the existing cis-elements in the promoter regions, suggesting the GELPs involvements of functions to be diversification and of the mechanisms to be a hormone-mediated manner. CONCLUSIONS: Our results provide a systematic and comprehensive understanding the function and regulatory mechanism of cotton GELP family, and offer an effective reference for in-depth genetic improvement utilization of cotton GELPs.


Assuntos
Esterases , Lipase , Esterases/genética , Esterases/metabolismo , Lipase/genética , Lipase/metabolismo , Gossypium/metabolismo , Genoma de Planta , Duplicação Gênica , Biologia Computacional , Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
7.
Plant Dis ; 107(11): 3623-3626, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37189043

RESUMO

Xanthomonas oryzae pv. oryzae (Xoo), the causal agent of bacterial leaf blight (BLB), is one of the most destructive bacterial pathogens in rice production worldwide. Although several complete genome sequences of Xoo strains have been released in public databases, they are mainly isolated from low-altitude indica rice cultivating areas. Here, a hypervirulent strain, YNCX, isolated from the high-altitude japonica rice-growing region in Yunnan Plateau, was used to extract genomic DNA for PacBio sequencing and Illumina sequencing. After assembly, a high-quality complete genome consisting of a circular chromosome and six plasmids was generated. The genome sequence of YNCX provides a valuable resource for high-altitude races and enables the identification of new virulence TALE effectors, contributing to a better understanding of rice-Xoo interactions.


Assuntos
Oryza , Xanthomonas , Oryza/microbiologia , China , Virulência/genética
9.
Anal Chem ; 95(9): 4564-4569, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36812460

RESUMO

Highly sensitive and selective detection of microRNA (miRNA) is becoming more and more important in the discovery, diagnosis, and prognosis of various diseases. Herein, we develop a three-dimensional DNA nanostructure based electrochemical platform for duplicate detection of miRNA amplified by nicking endonuclease. Target miRNA first helps construction of three-way junction structures on the surfaces of gold nanoparticles. After nicking endonuclease-powered cleavage reactions, single-stranded DNAs labeled with electrochemical species are released. These strands can be facilely immobilized at four edges of the irregular triangular prism DNA (iTPDNA) nanostructure via triplex assembly. By evaluating the electrochemical response, target miRNA levels can be determined. In addition, the triplexes can be disassociated by simply changing pH conditions, and the iTPDNA biointerface can be regenerated for duplicate analyses. The developed electrochemical method not only exhibits an excellent prospect in the detection of miRNA but also may inspire the engineering of recyclable biointerfaces for biosensing platforms.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , MicroRNAs , MicroRNAs/genética , MicroRNAs/análise , Endonucleases/química , Ouro/química , Nanopartículas Metálicas/química , Técnicas de Amplificação de Ácido Nucleico/métodos , DNA/genética , DNA/química , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Limite de Detecção
10.
Sheng Wu Gong Cheng Xue Bao ; 39(2): 724-740, 2023 Feb 25.
Artigo em Chinês | MEDLINE | ID: mdl-36847101

RESUMO

SUN gene is a group of key genes regulating plant growth and development. Here, SUN gene families of strawberry were identified from the genome of the diploid Fragaria vesca, and their physicochemical properties, genes structure, evolution and genes expression were also analyzed. Our results showed that there were thirty-one FvSUN genes in F. vesca and the FvSUNs encoded proteins were classified into seven groups, and the members in the same group showed high similarity in gene structures and conservative motifs. The electronic subcellular localization of FvSUNs was mainly in the nucleus. Collinearity analysis showed that the members of FvSUN gene family were mainly expanded by segmental duplication in F. vesca, and Arabidopsis and F. vesca shared twenty-three pairs of orthologous SUN genes. According to the expression pattern in different tissues shown by the transcriptome data of F. vesca, the FvSUNs gene can be divided into three types: (1) expressed in nearly all tissues, (2) hardly expressed in any tissues, and (3) expressed in special tissues. The gene expression pattern of FvSUNs was further verified by quantitative real-time polymerase chain reaction (qRT-PCR). Additionally, the seedlings of F. vesca were treated by different abiotic stresses, and the expression level of 31 FvSUNs genes were assayed by qRT-PCR. The expression of most of the tested genes was induced by cold, high salt or drought stress. Our studies may facilitate revealing the biological function and molecular mechanism of SUN genes in strawberry.


Assuntos
Arabidopsis , Fragaria , Fragaria/genética , Fragaria/metabolismo , Genes de Plantas , Estresse Fisiológico/genética , Arabidopsis/genética , Desenvolvimento Vegetal , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
11.
Sheng Wu Gong Cheng Xue Bao ; 39(2): 741-754, 2023 Feb 25.
Artigo em Chinês | MEDLINE | ID: mdl-36847102

RESUMO

In this study, a new Bacillus velezensis strain Bv-303 was identified and its biocontrol effect against rice bacterial-blight (BB) disease caused by Xanthomonas oryzae pv. oryzae (Xoo) was investigated. Cell-free supernatant (CFS) of strain Bv-303 under different growth conditions were prepared to test the antagonistic activity and stability against Xoo by the Oxford-cup method in vitro. The antibacterial effect of strain Bv-303 to BB disease in rice were further analyzed in vivo by spraying the cell-culture broth (CCB), CFS and cell-suspension water (CSW), respectively, on the rice leaves inoculated with Xoo. Additionally, rice seeds germination rate and seedling growth under the strain Bv-303 CCB treatment were tested. The results showed that the strain Bv-303 CFS significantly inhibited Xoo growth by 85.7%‒88.0% in vitro, which was also stable under extreme environment conditions such as heat, acid, alkali and ultraviolet light. As tested in vivo, spraying the CCB, CFS or CSW of strain Bv-303 on the Xoo-infected leaves enhanced rice plant resistance to BB disease, with CCB showing the highest increase (62.7%) in disease-resistance. Notably, CCB does not have negative effects on rice seed germination and seedling growth. Therefore, strain Bv-303 has great potential for biocontrol of the rice BB disease.


Assuntos
Bacillus , Oryza , Xanthomonas , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia
12.
BMC Complement Med Ther ; 23(1): 28, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36721211

RESUMO

BACKGROUND: Osteonecrosis of the femoral head (ONFH) is still a challenge for orthopedists worldwide and can lead to disability if patients are not treated effectively. Danyu Gukang Pill (DGP), a traditional Chinese medicine (TCM) formulation, is recognized to be effective against ONFH. Nevertheless, its molecular mechanisms remain to be clarified. METHODS: The active ingredients of DGP were collected from the online databases according to oral bioavailability (OB) and drug-likeness (DL). The potential targets of DGP were retrieved from the TCMSP database, while the potential targets of ONFH were obtained from the GeneCards and NCBI databases. The functions and signaling pathways of the common targets of DGP and ONFH were enriched by GO and KEGG analyses. Subsequently, molecular docking and in vitro cell experiments were performed to further validate our findings. RESULTS: In total, 244 active ingredients of DGP and their corresponding 317 targets were obtained, and 40 ONFH-related targets were predicted. Afterwards, 19 common targets of DGP and ONFH were obtained and used as potential targets for the treatment of ONFH. Finally, combined with network pharmacology analysis, molecular docking and in vitro cell experiments, our study first demonstrated that the treatment effect of DGP on ONFH might be closely related to the two targets, HIF1A (HIF-1α) and VEGFA, and the HIF-1 signaling pathway. CONCLUSIONS: This study is the first to investigate the molecular mechanisms of DGP in the treatment of ONFH based on network pharmacology. The results showed that DGP might up-regulate the expression of HIF-1α and VEGFA by participating in the HIF-1 signaling pathway, thus playing an anti-ONFH role.


Assuntos
Produtos Biológicos , Necrose da Cabeça do Fêmur , Humanos , Disponibilidade Biológica , Produtos Biológicos/uso terapêutico , Simulação de Acoplamento Molecular , Farmacologia em Rede , Necrose da Cabeça do Fêmur/tratamento farmacológico
13.
J Plant Physiol ; 280: 153887, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36543064

RESUMO

Ascorbate oxidase (AO) and skewed5 (SKU5)-similar (SKS) proteins belong to the multicopper oxidase (MCO) family and play important roles in plants in response to environmental stress via modulation of oxidoreduction homeostasis. Currently, reports on the response of Gossypium barbadense MCO to Verticillium wilt (VW) caused by Verticillium dahliae are still limited. Herein, RNA sequencing of two G. barbadense cultivars of VW-resistant XH21 and VW-susceptible XH7 under V. dahliae treatment, combined with physiological and genetic analysis, was performed to analyze the function and mechanism of multicopper oxidases GbAO and GbSKS involved in V. dahliae resistance. The identified differentially expressed genes are mainly involved in the regulation of oxidoreduction reaction, and extracellular components and signaling. Interestingly, ascorbate oxidase family members were discovered as the most significantly upregulated genes after V. dahliae treatment, including GbAO3A/D, GbSKS3A/D, and GbSKS16A/D. H2O2 and Asc contents, especially reductive Asc in both XH21 and XH7, were shown to be increased. Silenced expression of respective GbAO3A/D, GbSKS3A/D, and GbSKS16A/D in virus-induced gene silencing (VIGS) cotton plants significantly decreased the resistance to V. dahliae, coupled with the reduced contents of pectin and lignin. Our results indicate that AO might be involved in cotton VW resistance via the regulation of cell wall components.


Assuntos
Ascomicetos , Gossypium , Gossypium/genética , Gossypium/metabolismo , Oxirredutases/genética , Oxirredutases/metabolismo , Ascorbato Oxidase/metabolismo , Peróxido de Hidrogênio/metabolismo , Ascomicetos/metabolismo , Resistência à Doença/genética , Doenças das Plantas/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo
14.
Anal Chem ; 94(42): 14755-14760, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36239383

RESUMO

Development of convenient, accurate, and sensitive methods for rapid screening of severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) infection is highly desired. In this study, we have developed a facile electrochemical aptasensor for the detection of the SARS-CoV-2 S1 protein amplified by dumbbell hybridization chain reaction (DHCR). A triangular prism DNA (TPDNA) nanostructure is first assembled and modified at the electrode interface. Due to the multiple thiol anchors, the immobilization is quite stable. The TPDNA nanostructure also provides an excellent scaffold for better molecular recognition efficiency on the top single-strand region (DHP0). The aptamer sequence toward the SARS-CoV-2 S1 protein is previously localized by partial hybridization with DHP0. In the presence of the target protein, the aptamer sequence is displaced and DHP0 is exposed. After further introduction of the fuel stands of DHCR, compressed DNA linear assembly occurs, and the product can be stacked on the TPDNA nanostructure for the enrichment of electrochemical species. This electrochemical method successfully detects the target protein in clinical samples, which provides a simple, robust, and accurate platform with great potential utility.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , COVID-19 , Nanoestruturas , Humanos , SARS-CoV-2/genética , Aptâmeros de Nucleotídeos/química , COVID-19/diagnóstico , DNA/química , Nanoestruturas/química , Técnicas Eletroquímicas , Compostos de Sulfidrila , Técnicas Biossensoriais/métodos
15.
Sheng Wu Gong Cheng Xue Bao ; 38(8): 2700-2712, 2022 Aug 25.
Artigo em Chinês | MEDLINE | ID: mdl-36002404

RESUMO

GLKs (GOLDEN 2-LIKEs) are a group of plant-specific transcription factors regulating the chloroplast biogenesis, differentiation and function maintains by triggering the expression of the photosynthesis-associated nuclear genes (PhANGs). The GLKs also play important roles in nutrient's accumulation in fruits, leaf senescence, immunity and abiotic stress response. The expression of GLK genes were affected by multiple hormones or environmental factors. Therefore, GLKs were considered as the key nodes of regulatory network in plant cells, and potential candidates to improve the photosynthetic capacity of crops. Since numerous researches of GLKs have been reported in plants, the biological function, molecular mechanism of GLKs genes and its applications in breeding were summarized and a GLK-mediated signaling network model was developed. This review may facilitate future research and application of GLKs.


Assuntos
Melhoramento Vegetal , Fatores de Transcrição , Cloroplastos/genética , Regulação da Expressão Gênica de Plantas , Fotossíntese/genética , Fatores de Transcrição/metabolismo
16.
Front Plant Sci ; 13: 877146, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35665163

RESUMO

In previous research on the resistance of cotton to Verticillium wilt (VW), Gossypium hirsutum and G. barbadense were usually used as the susceptible and resistant cotton species, despite their different genetic backgrounds. Herein, we present data independent acquisition (DIA)-based comparative proteomic analysis of two G. barbadense cultivars differing in VW tolerance, susceptible XH7 and resistant XH21. A total of 4,118 proteins were identified, and 885 of them were differentially abundant proteins (DAPs). Eight co-expressed modules were identified through weighted gene co-expression network analysis. GO enrichment analysis of the module that significantly correlated with V. dahliae infection time revealed that oxidoreductase and peroxidase were the most significantly enriched GO terms. The last-step rate-limiting enzyme for ascorbate acid (AsA) biosynthesis was further uncovered in the significantly enriched GO terms of the 184 XH21-specific DAPs. Additionally, the expression of ascorbate peroxidase (APX) members showed quick accumulation after inoculation. Compared to XH7, XH21 contained consistently higher AsA contents and rapidly increased levels of APX expression, suggesting their potential importance for the resistance to V. dahliae. Silencing GbAPX1/12 in both XH7 and XH 21 resulted in a dramatic reduction in VW resistance. Our data indicate that APX-mediated oxidoreductive metabolism is important for VW resistance in cotton.

17.
J Agric Food Chem ; 70(20): 6156-6167, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35575308

RESUMO

High yield and superior quality are the main goals pursued by breeders for crop improvement. However, both of them are complex agronomic traits controlled by multiple genes, so the simultaneous improvement of these traits via sexual recombination is time-consuming and direction-uncontrolled. In this study, to solve this dilemma, we introduced the comparative genomic analysis based multiplex genome editing system (CG-MGE), a method for rapid and directional improvement of multiple traits. Application of this method, association analysis between genotypes and phenotypes was carried out to mine excellent alleles; subsequently, the rare excellent alleles of Gn1a, GW2, TGW3, and Chalk5 were simultaneously created by multiplex genome editing and successfully improved the plant architecture, grain yield, and quality of a widely cultivated elite rice variety. Overall, this study provides a method for rapid and directional improvement of crops, and the application of the CG-MGE will be helpful to accelerate rational design breeding.


Assuntos
Edição de Genes , Oryza , Grão Comestível , Edição de Genes/métodos , Genoma de Planta , Genômica , Oryza/genética , Melhoramento Vegetal/métodos
18.
Int J Mol Sci ; 23(3)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35163443

RESUMO

Executor (E) genes comprise a new type of plant resistance (R) genes, identified from host-Xanthomonas interactions. The Xanthomonas-secreted transcription activation-like effectors (TALEs) usually function as major virulence factors, which activate the expression of the so-called "susceptibility" (S) genes for disease development. This activation is achieved via the binding of the TALEs to the effector-binding element (EBE) in the S gene promoter. However, host plants have evolved EBEs in the promoters of some otherwise silent R genes, whose expression directly causes a host cell death that is characterized by a hypersensitive response (HR). Such R genes are called E genes because they trap the pathogen TALEs in order to activate expression, and the resulting HR prevents pathogen growth and disease development. Currently, deploying E gene resistance is becoming a major component in disease resistance breeding, especially for rice bacterial blight resistance. Currently, the biochemical mechanisms, or the working pathways of the E proteins, are still fuzzy. There is no significant nucleotide sequence homology among E genes, although E proteins share some structural motifs that are probably associated with the signal transduction in the effector-triggered immunity. Here, we summarize the current knowledge regarding TALE-type avirulence proteins, E gene activation, the E protein structural traits, and the classification of E genes, in order to sharpen our understanding of the plant E genes.


Assuntos
Resistência à Doença , Proteínas de Plantas/genética , Plantas/microbiologia , Xanthomonas/patogenicidade , Proteínas de Bactérias/metabolismo , Regulação da Expressão Gênica de Plantas , Imunidade Inata , Plantas/genética , Regiões Promotoras Genéticas , Efetores Semelhantes a Ativadores de Transcrição/metabolismo , Xanthomonas/metabolismo
19.
Genes Genomics ; 44(7): 757-771, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35226330

RESUMO

BACKGROUND: Mitogen-activated protein kinases (MPKs) play important role in response to environmental stress as crucial signal receptors or sensors. Our previous study indicated that salt stress acts as a positive factor to stimulate the production of pharmacodynamic metabolites in the medicinal plant Glycyrrhiza uralensis. Currently, little is known about the MPK gene family and their functions in the medicinal plant G. uralensis. OBJECTIVE: Identification, comprehensive bioinformatic analysis, expression profiling, and response pattern under salt stress of the G. uralensis GuMPK gene family. METHODS: Genome-wide investigation and expression profiling of the MPK gene family in G. uralensis, and their phylogenetic relationships, evolutionary characteristics, gene structure, motif distribution, promoter cis-acting element, and expression pattern under salt stress in two different salt-tolerant Glycyrrhiza species were performed. RESULTS: A total of 20 G. uralensis GuMPK genes were identified and categorized into five groups, and had conserved gene structure and motif distribution. Expression profiling of GuMPK genes suggested their potentially diverse functions in plant growth and in response to phytohormones and environmental stress, particularly GuMPK1, 2, 5, and 10 as key components for G. uralensis in response to abiotic stress. Further expression analysis under NaCl treatment in two different salt-tolerant Glycyrrhiza species displayed the MPKs' different response patterns, emphasizing the role of MPK2, 5, 7, and 16 as potentially crucial genes for Glycyrrhiza to respond to salt stress. CONCLUSION: Our results provide a genome-wide identification and expression profiling of MPK gene family in G. uralensis, and establish the foundation for screening key responsive genes and understanding the potential function and regulatory mechanism of GuMPKs in salt responsiveness.


Assuntos
Glycyrrhiza uralensis , Glycyrrhiza , Plantas Medicinais , Glycyrrhiza/química , Glycyrrhiza/genética , Glycyrrhiza uralensis/química , Glycyrrhiza uralensis/genética , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Filogenia , Extratos Vegetais
20.
Mol Genet Genomics ; 297(2): 333-343, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35187583

RESUMO

The aerial parts of Glycyrrhiza uralensis supply substantial raw material for the extraction of active pharmaceutical ingredients comprehensively utilized in many industries. Our previous study indicated that salt stress increased the content of active ingredients. However, the regulatory mechanism remains unclear. In this study, RNA-sequencing (RNA-seq) of the aerial parts of G. uralensis treated with 150 mM NaCl for 0, 2, 6, and 12 h was performed to identify the key genes and metabolic pathways regulating pharmacological active component accumulation. The main active component detection showed that liquiritin was the major ingredient and exhibited more than a ten-fold significant increase in the 6 h NaCl treatment. Temporal expression analysis of the obtained 4245 differentially expressed genes (DEGs) obtained by RNA-seq revealed two screened profiles that included the significant up-regulated DEGs (UDEGs) at different treatment points. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of these UDEGs identified phenylpropanoid metabolism and flavonoid biosynthesis as the most significantly enriched pathways in 2 h treated materials. Interestingly, the carotenoid biosynthesis pathway that is related to ABA synthesis was also discovered, and the ABA content was significantly promoted after 6 h NaCl treatment. Following ABA stimulation, the content of liquiritin demonstrated a significant and immediate increase after 2 h treatment, with the corresponding consistent expression of genes involved in the pathways of ABA signal transduction and flavonoid biosynthesis, but not in the pathway of glycyrrhizic acid biosynthesis. Our study concludes that salt stress might promote liquiritin accumulation through the ABA-mediated signaling pathway, and provides effective reference for genetic improvement and comprehensive utilization of G. uralensis.


Assuntos
Glycyrrhiza uralensis , Flavanonas , Glucosídeos , Glycyrrhiza uralensis/genética , Glycyrrhiza uralensis/metabolismo , Preparações Farmacêuticas/metabolismo , Componentes Aéreos da Planta , Estresse Salino , Transdução de Sinais/genética , Transcriptoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...