Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gastroenterology ; 167(2): 264-280, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38417530

RESUMO

BACKGROUND & AIMS: Hepatocellular carcinoma (HCC) is characterized by an immune-suppressive microenvironment, which contributes to tumor progression, metastasis, and immunotherapy resistance. Identification of HCC-intrinsic factors regulating the immunosuppressive microenvironment is urgently needed. Here, we aimed to elucidate the role of SYR-Related High-Mobility Group Box 18 (SOX18) in inducing immunosuppression and to validate novel combination strategies for SOX18-mediated HCC progression and metastasis. METHODS: The role of SOX18 in HCC was investigated in orthotopic allografts and diethylinitrosamine/carbon tetrachloride-induced spontaneous models by using murine cell lines, adeno-associated virus 8, and hepatocyte-specific knockin and knockout mice. The immune cellular composition in the HCC microenvironment was evaluated by flow cytometry and immunofluorescence. RESULTS: SOX18 overexpression promoted the infiltration of tumor-associated macrophages (TAMs) and regulatory T cells (Tregs) while diminishing cytotoxic T cells to facilitate HCC progression and metastasis in cell-derived allografts and chemically induced HCC models. Mechanistically, transforming growth factor-beta 1 (TGF-ß1) upregulated SOX18 expression by activating the Smad2/3 complex. SOX18 transactivated chemokine (C-X-C motif) ligand 12 (CXCL12) and programmed death ligand 1 (PD-L1) to induce the immunosuppressive microenvironment. CXCL12 knockdown significantly attenuated SOX18-induced TAMs and Tregs accumulation and HCC dissemination. Antagonism of chemokine receptor 4 (CXCR4), the cognate receptor of CXCL12, or selective knockout of CXCR4 in TAMs or Tregs likewise abolished SOX18-mediated effects. TGFßR1 inhibitor Vactosertib or CXCR4 inhibitor AMD3100 in combination with anti-PD-L1 dramatically inhibited SOX18-mediated HCC progression and metastasis. CONCLUSIONS: SOX18 promoted the accumulation of immunosuppressive TAMs and Tregs in the microenvironment by transactivating CXCL12 and PD-L1. CXCR4 inhibitor or TGFßR1 inhibitor in synergy with anti-PD-L1 represented a promising combination strategy to suppress HCC progression and metastasis.


Assuntos
Antígeno B7-H1 , Benzilaminas , Carcinoma Hepatocelular , Quimiocina CXCL12 , Ciclamos , Progressão da Doença , Neoplasias Hepáticas , Receptores CXCR4 , Fatores de Transcrição SOXF , Linfócitos T Reguladores , Fator de Crescimento Transformador beta1 , Microambiente Tumoral , Macrófagos Associados a Tumor , Regulação para Cima , Animais , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Fatores de Transcrição SOXF/metabolismo , Fatores de Transcrição SOXF/genética , Antígeno B7-H1/metabolismo , Antígeno B7-H1/genética , Microambiente Tumoral/imunologia , Humanos , Receptores CXCR4/metabolismo , Receptores CXCR4/genética , Fator de Crescimento Transformador beta1/metabolismo , Camundongos , Quimiocina CXCL12/metabolismo , Quimiocina CXCL12/genética , Ciclamos/farmacologia , Benzilaminas/farmacologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Linhagem Celular Tumoral , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/imunologia , Camundongos Knockout , Regulação Neoplásica da Expressão Gênica , Transdução de Sinais , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Camundongos Endogâmicos C57BL , Dietilnitrosamina/toxicidade , Masculino
2.
Theranostics ; 13(12): 4042-4058, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37554278

RESUMO

Background: Metastasis is a major cause of HCC-related deaths with no effective pharmacotherapies. Chronic inflammation promotes HCC dissemination, however, its underlying mechanisms are not fully understood. Here, we investigated the role of Krüppel-like factor 7 (KLF7) in inflammation-provoked HCC metastasis and proposed therapeutic strategies for KLF7-positive patients. Methods: The expression of KLF7 in human HCC specimens were examined by immunohistochemistry and quantitative real-time PCR. The luciferase reporter assays and chromatin immunoprecipitation assays were conducted to explore the transcriptional regulation related to KLF7. Orthotopic xenograft models and DEN/CCl4-induced HCC models were established to evaluate HCC progression and metastasis. Results: KLF7 overexpression promotes HCC metastasis through transactivating toll-like receptor 4 (TLR4) and protein tyrosine kinase 2 (PTK2) expression. High mobility group box 1 (HMGB1) upregulates KLF7 expression through the TLR4/advanced glycosylation end-product specific receptor (RAGE)-PI3K-AKT-NF-κB pathway, forming an HMGB1-KLF7-TLR4 positive feedback loop. The HMGB1-KLF7-TLR4/PTK2 axis is gradually activated during the progression of inflammation-HCC transition. Genetic depletion of KLF7 impedes HMGB1-mediated HCC progression and metastasis. The combined application of TLR4 inhibitor TAK-242 and PTK2 inhibitor defactinib alleviates HCC progression and metastasis induced by the HMGB1-KLF7 axis. In human HCCs, KLF7 expression is positively correlated with cytoplasmic HMGB1, p-p65, TLR4, and PTK2 levels, and patients positively co-expressing HMGB1/KLF7, p-p65/KLF7, KLF7/TLR4 or KLF7/PTK2 exhibit the worst prognosis. Conclusions: HMGB1-induced KLF7 overexpression facilitates HCC progression and metastasis by upregulating TLR4 and PTK2. Genetic ablation of KLF7 via AAV gene therapy and combined blockade of TLR4 and PTK2 represents promising therapy strategies for KLF7-positive HCC patients.


Assuntos
Carcinoma Hepatocelular , Proteína HMGB1 , Fatores de Transcrição Kruppel-Like , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Quinase 1 de Adesão Focal , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , Inflamação/etiologia , Fatores de Transcrição Kruppel-Like/genética , Neoplasias Hepáticas/patologia , Fosfatidilinositol 3-Quinases , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
3.
Theranostics ; 13(4): 1401-1418, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36923538

RESUMO

Background: Metastasis accounts for the high lethality of colorectal cancer (CRC) patients. Unfortunately, the molecular mechanism manipulating metastasis in CRC is still elusive. Here, we investigated the function of E74-like factor 4 (ELF4), an ETS family member, in facilitating CRC progression. Methods: The expression of ELF4 in human CRC samples and CRC cell lines was determined by quantitative real-time PCR, immunohistochemistry and immunoblotting. The migratory and invasive phenotypes of CRC cells were evaluated by in vitro transwell assays and in vivo metastatic models. The RNA sequencing was used to explore the downstream targets of ELF4. The luciferase reporter assays and chromatin immunoprecipitation assays were used to ascertain the transcriptional regulation related to ELF4. Results: We found elevated ELF4 was positively correlated with distant metastasis, advanced AJCC stages, and dismal outcomes in CRC patients. ELF4 expression was also an independent predictor of poor prognosis. Overexpression of ELF4 boosted CRC metastasis via transactivating its downstream target genes, fibroblast growth factor receptor 4 (FGFR4) and SRC proto-oncogene, non-receptor tyrosine kinase, SRC. Fibroblast growth factor 19 (FGF19) upregulated ELF4 expression through the ERK1/2/SP1 axis. Clinically, ELF4 expression had a positive correlation with FGF19, FGFR4 and SRC, and CRC patients who positively coexpressed FGF19/ELF4, ELF4/FGFR4, or ELF4/SRC exhibited the worst clinical outcomes. Furthermore, the combination of the FGFR4 inhibitor BLU-554 and the SRC inhibitor KX2-391 dramatically suppressed ELF4-mediated CRC metastasis. Conclusions: We demonstrated the essentiality of ELF4 in the metastatic process of CRC, and targeting the ELF4-relevant positive feedback circuit might represent a novel therapeutic strategy.


Assuntos
Neoplasias Colorretais , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos , Humanos , Linhagem Celular Tumoral , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica , Proliferação de Células , Metástase Neoplásica , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo
4.
Front Genet ; 14: 1056000, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36845390

RESUMO

Background: Cuproptosis is a newly defined form of cell death, whether cuproptosis involved in hepatocellular carcinoma (HCC) remains elusive. Method: We obtained patients' RNA expression data and follow-up information from University of California Santa Cruz (UCSC) and The Cancer Genome Atlas (TCGA). We analyzed the mRNA level of Cuproptosis-related genes (CRGs) and performed univariate Cox analysis. Liver hepatocellular carcinoma (LIHC) was chosen for further investigation. Real-Time quantitative PCR (RT-qPCR), Western blotting (WB), Immunohistochemical (IHC), and Transwell assays were used to determine expression patterns and functions of CRGs in LIHC. Next, we identified CRGs-related lncRNAs (CRLs) and differentially expressed CRLs between HCC and normal cases. Univariate Cox analysis, least absolute shrinkage selection operator (LASSO) analysis and Cox regression analysis were used to construct the prognostic model. Univariate and multivariate Cox analysis was used to assess whether the risk model can act as an independent risk factor of overall survival duration. Different risk groups performed immune correlation analysis, tumor mutation burden (TMB), and Gene Set Enrichment Analysis (GSEA) analysis were performed in different risk groups. Finally, we assessed the performance of the predictive model in drug sensitivity. Results: CRGs expression levels have significant differences between tumor and normal tissues. High expression of Dihydrolipoamide S-Acetyltransferase (DLAT) correlated to metastasis of HCC cells and indicated poor prognosis for HCC patients. Our prognostic model consisted of four cuproptosis-related lncRNA (AC011476.3, AC026412.3, NRAV, MKLN1-AS). The prognostic model performed well in predicting survival rates. The results from Cox regression analysis suggested that risk score can serve as an independent prognostic element for survival durations. Survival analysis revealed that low risk patients have extended survival periods compared with those with high risk. The results of the immune analysis indicated that risk score has a positive correlation with B cell and CD4+ T cell Th2, while has a negative relationship with endothelial cell and hematopoietic cells. Besides, immune checkpoint genes have higher expression folds in the high-risk set than in the low-risk set. The high-risk group had higher rates of genetic mutation than the low-risk set while having a shorter survival time. GSEA revealed the signaling pathways enriched in the high-risk group were mostly immune-related, while metabolic-related pathways were enriched in the low-risk group. Drugs sensitivity analysis indicated that our model has the ability to predict the efficacy of clinical treatment. Conclusion: The Cuproptosis-related lncRNAs prognostic formula is a novel predictor of HCC patients' prognosis and drug sensitivity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...