Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
Acta Crystallogr E Crystallogr Commun ; 80(Pt 6): 691-694, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38845704

RESUMO

The title compound, tetra-ethyl-ammonium tri-azido-tri-µ3-sulfido-[µ3-(tri-methyl-sil-yl)aza-nediido][tris-(3,5-di-methyl-pyrazol-1-yl)hydro-borato]triiron(+2.33)molybdenum(IV), (C8H20N)[Fe3MoS3(C15H22BN6)(C3H9NSi)(N3)3] or (Et4N)[(Tp*)MoFe3S3(µ3-NSiMe3)(N3)3] [Tp* = tris-(3,5-di-methyl-pyrazol-1-yl)hydro-bor-ate(1-)], crystallizes as needle-like black crystals in space group P . In this cluster, the Mo site is in a distorted octa-hedral coordination model, coordinating three N atoms on the Tp* ligand and three µ3-bridging S atoms in the core. The Fe sites are in a distorted tetra-hedral coordination model, coordinating two µ3-bridging S atoms, one µ3-bridging N atom from Me3SiN2-, and another N atom on the terminal azide ligand. This type of heterometallic and heteroleptic single cubane cluster represents a typical example within the Mo-Fe-S cluster family, which may be a good reference for understanding the structure and function of the nitro-genase FeMo cofactor. The residual electron density of disordered solvent mol-ecules in the void space could not be reasonably modeled, thus the SQUEEZE [Spek (2015). Acta Cryst. C71, 9-18] function was applied. The solvent contribution is not included in the reported mol-ecular weight and density.

2.
ACS Nano ; 18(20): 13298-13307, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38727530

RESUMO

As a second-order nonlinear optical phenomenon, the bulk photovoltaic (BPV) effect is expected to break through the Shockley-Queisser limit of thermodynamic photoelectron conversion and improve the energy conversion efficiency of photovoltaic cells. Here, we have successfully induced a strong flexo-photovoltaic (FPV) effect, a form of BPV effect, in strained violet phosphorene nanosheets (VPNS) by utilizing strain engineering at the h-BN nanoedge, which was first observed in nontransition metal dichalcogenide (TMD) systems. This BPV effect was found to originate from the disruption of inversion symmetry induced by uniaxial strain applied to VPNS at the h-BN nanoedge. We have revealed the intricate relationship between the bulk photovoltaic effect and strain gradients in VPNS through thickness-dependent photovoltaic response experiments. A bulk photovoltaic coefficient of up to 1.3 × 10-3 V-1 and a polarization extinction ratio of 21.6 have been achieved by systematically optimizing the height of the h-BN nanoedge and the thickness of VPNS, surpassing those of reported TMD materials (typically less than 3). Our results have revealed the fundamental relationship between the FPV effect and the strain gradients in low-dimensional materials and inspired further exploration of optoelectronic phenomena in strain-gradient engineered materials.

3.
Natl Sci Rev ; 11(4): nwad327, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38487495

RESUMO

Iron-metal clusters are crucial in a variety of critical biological and material systems, including metalloenzymes, catalysts, and magnetic storage devices. However, a synthetic high-nuclear iron cluster has been absent due to the extreme difficulty in stabilizing species with direct iron-iron bonding. In this work, we have synthesized, crystallized, and characterized a (Tp*)4W4S12(Fe@Fe12) cluster (Tp* = tris(3,5-dimethyl-1-pyrazolyl)borate(1-)), which features a rare trideca-nuclear, icosahedral [Fe@Fe12] cluster core with direct multicenter iron-iron bonding between the interstitial iron (Fei) and peripheral irons (Fep), as well as Fep···Fep ferromagnetic coupling. Quantum chemistry studies reveal that the stability of the cluster arises from the 18-electron shell-closing of the [Fe@Fe12]16+ core, assisted by its bonding interactions with the peripheral tridentate [(Tp*)WS3]4- ligands which possess both S→Fe donation and spin-polarized Fe-W σ bonds. The ground-state electron spin is theoretically predicted to be S = 32/2 for the cluster. The existence of low oxidation-state (OS ∼ +1.23) iron in this compound may find interesting applications in magnetic storage, spintronics, redox chemistry, and cluster catalysis.

4.
Clin Rheumatol ; 43(1): 29-40, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37930596

RESUMO

BACKGROUND: It has been proved that rheumatoid arthritis (RA) patients have high incidence of atrial fibrillation (AF). Nevertheless, whether they have causal relevance is uncertain. This study aimed to explore and verify the authenticity of causal relationship between RA and AF using Mendelian randomization (MR). METHODS: The genome-wide association study (GWAS) summary data from Biobank Japan Project (BBJ) (RA, 4199 cases and 208,254 controls) were regarded as exposure data and the GWAS data from European Bio-informatics Institute database (EBI) (AF, 15,979 cases and 102,776 controls) as outcome data. The causal effect was appraised by the inverse variance weighted (IVW) method, MR-Egger regression, and weighted median estimator. MR-robust adjusted profile score (MR-RAPS) method was delivered to examine the robustness of causal relationship and MR Pleiotropy Residual Sum and Outlier (MR-PRESSO) method to control horizontal (directional) pleiotropy. RESULTS: The results indicated that RA increased the risk of AF (IVW, the odds ratio (OR) = 1.060; 95% confidence interval (CI), 1.028 to 1.092; p = 1.411 × 10-4; weighted median, OR = 1.046, 95% CI, 1.002 to 1.093, p = 0.047). The MR analysis also showed this causal effect through all four IVW methods with various statistical algorithms. Both MR-RAPS and MR-PRESSO supported the causality of RA and AF. Also, the MR-PRESSO result indicated the absence of apparent pleiotropy. CONCLUSION: There is a causal association between RA and AF. RA patients are genetically more vulnerable to AF. This study may contribute to further exploring early clinical prevention and fundamental mechanism of AF in patients with RA. Key Points • We provided some genetic evidence for the causal link between rheumatoid arthritis (RA) and atrial fibrillation (AF) with multiple Mendelian randomization (MR) methods. • RA patients were genetically more vulnerable to AF. • This study partly shed light on latent fundamental mechanisms underlying RA-induced AF and inspired future studies on RA-AF relationship.


Assuntos
Artrite Reumatoide , Fibrilação Atrial , Humanos , Fibrilação Atrial/complicações , Fibrilação Atrial/epidemiologia , Fibrilação Atrial/genética , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Algoritmos , Artrite Reumatoide/complicações , Artrite Reumatoide/genética
5.
Sci Adv ; 9(37): eadi5104, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37713483

RESUMO

As the most promising candidates for the implementation of in-sensor computing, retinomorphic vision sensors can constitute built-in neural networks and directly implement multiply-and-accumulation operations using responsivities as the weights. However, existing retinomorphic vision sensors mainly use a sustained gate bias to maintain the responsivity due to its volatile nature. Here, we propose an ion-induced localized-field strategy to develop retinomorphic vision sensors with nonvolatile tunable responsivity in both positive and negative regimes and construct a broadband and reconfigurable sensory network with locally stored weights to implement in-sensor convolutional processing in spectral range of 400 to 1800 nanometers. In addition to in-sensor computing, this retinomorphic device can implement in-memory computing benefiting from the nonvolatile tunable conductance, and a complete neuromorphic visual system involving front-end in-sensor computing and back-end in-memory computing architectures has been constructed, executing supervised and unsupervised learning tasks as demonstrations. This work paves the way for the development of high-speed and low-power neuromorphic machine vision for time-critical and data-intensive applications.

6.
J Colloid Interface Sci ; 644: 454-465, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37137212

RESUMO

Reasonable heterointerface modification can effectively regulate and enhance the microwave absorption of electromagnetic materials. The surface of magnetic permalloy (PM) microparticles is modified herein by coating double-layer metal organic frameworks (MOF), which are composed of a 2-methylimidazole cobalt salt (ZIF-67) layer and a 2-methylimidazole zinc salt (ZIF-8) layer. A stable heterointerface structure with cobalt/carbon (Co/C) and zinc/carbon (Zn/C) layers is formed on the surface of PM microparticles after pyrolysis. These particles include two types of composite particles of PM solely encapsulated by ZIF-67 or ZIF-8, PM@ZIF67 and PM@ZIF8, respectively, and two types of composite PM particles with a double-layered MOF outer shell structure obtained by exchanging the coating sequence (PM@ZIF8@ZIF67 and PM@ZIF67@ZIF8). Furthermore, the thermal decomposition temperature has a significant impact on the surface morphology and magnetic properties of the composite particles. After pyrolyzing at 500 °C, the PM@ZIF67@ZIF8 samples exhibit the highest microwave absorption performance among these samples. Specifically, the minimum reflection loss and effective absorption bandwidth of PM@ZIF67@ZIF8 after pyrolyzing at 500 °C can reach -47.3 dB at a matching thickness of 3.8 mm and 5.3 GHz at a matching thickness of 2.5 mm, respectively. A heterointerface with an electrical field orientation is created in the PM@ZIF67@ZIF8 particles, which effectively enhances the interface polarization and dipole polarization. Furthermore, the formation of a three-dimensional carbon network after pyrolysis is also useful for optimizing impedance matching and enhancing magneto-electric synergism.

7.
Dalton Trans ; 52(21): 7166-7174, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37161834

RESUMO

The lack of M-Fe-S (M = Mo or W) clusters incorporating a second period (2p) atom in the core has resulted in limited investigations and poor understanding of the physical and chemical properties of the M-Fe-S clusters closely related to the FeMo cofactor. In this work, systematic studies have been carried out to explore the chemical reactivities at the terminal ligand sites and the redox properties of a series of clusters comprising a [WFe3S3N] cubane core, based on the previously developed cluster [(Tp*)WFe3S3(µ3-NSiMe3)Cl3]1-. Substitutions of the terminal chlorides with ethanethiolate, methanethiolate, thiophenolate, p-thiocresolate and azide occurred smoothly, while the replacement of the chlorides with carbene ligands required the reduction of the precursor into [(Tp*)WFe3S3(µ3-NSiMe3)Cl3]2- first. The reduced cluster core could also be supported by thiophenolates as terminal ligands, but not thiolates or azides. It is remarkable that the thiophenolate ligated reduced cluster can be synthesized from the precursor [(Tp*)WFe3S3(µ3-NSiMe3)Cl3]1-via different synthetic routes, either reduction followed by substitution or substitution followed by reduction, either in situ or stepwise. This work indicates that terminal ligands contribute significantly to determine the chemical and physical properties of the clusters, even though they might affect the cluster core to a limited extent from a structural point of view, which raises the possibility of delicate control in regulating the physical/chemical properties of M-Fe-S clusters with a heteroleptic core incorporating 2p atom(s).

8.
Sci Technol Adv Mater ; 24(1): 2196240, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37090847

RESUMO

Graphdiyne (GDY) is an emerging two-dimensional carbon allotrope featuring a direct bandgap and fascinating physical and chemical properties, and it has demonstrated its promising potential in applications of catalysis, energy conversion and storage, electrical/optoelectronic devices, etc. In particular, the recent breakthrough in the synthesis of large-area, high-quality and ultrathin GDY films provides a feasible approach to developing high-performance electrical devices based on GDY. Recently, various GDY-based electrical and optoelectronic devices including multibit optoelectronic memories, ultrafast nonvolatile memories, artificial synapses and memristors have been proposed, in which GDY plays a crucial role. It is essential to summarize the recent breakthrough of GDY in device applications as a guidance, especially considering that the existing GDY-related reviews mainly focus on the applications in catalysis and energy-related fields. Herein, we review GDY-based novel memory and neuromorphic devices and their applications in neuromorphic computing and artificial visual systems. This review will provide an insight into the design and preparation of GDY-based devices and broaden the application fields of GDY.

9.
Nat Commun ; 13(1): 4591, 2022 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-35933437

RESUMO

The explosion in demand for massive data processing and storage requires revolutionary memory technologies featuring ultrahigh speed, ultralong retention, ultrahigh capacity and ultralow energy consumption. Although a breakthrough in ultrafast floating-gate memory has been achieved very recently, it still suffers a high operation voltage (tens of volts) due to the Fowler-Nordheim tunnelling mechanism. It is still a great challenge to realize ultrafast nonvolatile storage with low operation voltage. Here we propose a floating-gate memory with a structure of MoS2/hBN/MoS2/graphdiyne oxide/WSe2, in which a threshold switching layer, graphdiyne oxide, instead of a dielectric blocking layer in conventional floating-gate memories, is used to connect the floating gate and control gate. The volatile threshold switching characteristic of graphdiyne oxide allows the direct charge injection from control gate to floating gate by applying a nanosecond voltage pulse (20 ns) with low magnitude (2 V), and restricts the injected charges in floating gate for a long-term retention (10 years) after the pulse. The high operation speed and low voltage endow the device with an ultralow energy consumption of 10 fJ. These results demonstrate a new strategy to develop next-generation high-speed low-energy nonvolatile memory.

10.
Huan Jing Ke Xue ; 43(6): 3149-3159, 2022 Jun 08.
Artigo em Chinês | MEDLINE | ID: mdl-35686784

RESUMO

With the method of ultraviolet-visible absorption spectroscopy (UV-vis) and excitation-emission matrix spectroscopy combined with parallel factor analysis (EEMs-PARAFAC), this study analyzed the change in dissolved organic matter (DOM) content and composition in spring and summer of two non-point source urban rivers which had different input intensities. The results indicated that the level of humification and molecular weight of DOM in summer was significantly higher than that in spring in these two rivers (P<0.01). The PARAFAC model was used to analyze four chemical compositions, including C1 (UVC fulvic-like), C2 (tryptophan-like), C3 (humic-like), and C4 (UVA fulvic-like); furthermore, C1[(31±6)%] and C2[(31±4)%] were the main fluorescent contents of the water. The high non-point source input river had a higher fluorescence intensity of all four PARAFAC components in spring than in summer, contrary to the low non-point source input river. The random forest regression model showed that C3% had the highest sensitivity to the changes in water parameters (R2=0.75, P<0.001) and could be an effective indicator. Additionally, the coverage level of the water surface (Cover) had an essential effect on the prediction of C4% (P<0.001), and C4% was susceptible to photochemical oxidation. According to the principal component analysis (PCA) and Adonis test, nitrogen and phosphorus were the essential impetuses for the biological process of the river; non-point source inputs and seasonal changes had a significant impact on the urban river (R2=0.775, P<0.001). The contents and compositions of urban river DOM were affected by many essential factors. Non-point source inputs improved the input level of terrestrial humus in the water and promoted the biological process at the same time, dynamically contributing to the changes in the DOM of the water body.


Assuntos
Matéria Orgânica Dissolvida , Poluição Difusa , Rios , Rios/química , Água
11.
Materials (Basel) ; 15(8)2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35454578

RESUMO

In this work, the contact force model and experiment methods were used to study the dynamic response and impact wear behavior of TP316H steel. The Flore model and the classic Hertz model were selected for comparison with the experimental results, and the model was revised according to the section parameters of the TP316H tube. The results show that there is a large difference between the models without considering the effect of structural stiffness on the impact system and the test results, whereas the revised model has a good agreement. With the rise in impact mass, the coefficient of restitution increases from 0.65 to 0.78, whereas the energy dissipation and wear volume decrease. Spalling, delamination, plastic deformation, and oxidative wear are the main impact wear mechanism of TP316H steel.

12.
Inorg Chem ; 61(9): 4150-4158, 2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35200007

RESUMO

The rational synthesis of iron-sulfur clusters with excellent control of the core ligands has been a significant challenge in biomimetic chemistry. In this work, the rational construction of versatile Mo-Fe-S cubane clusters was realized using a LEGO strategy. (LEGO is a line of plastic construction toys consisting of various interlocking plastic bricks which can be assembled and connected in different ways to construct versatile objects. Herein we use "LEGO strategy" as an analogy for the stepwise synthetic methodology, and we use "brick" to represent a corner atom of the cubane structure.) Through careful synthetic control, the ⟨Fe⟩, ⟨S⟩, and ⟨Cl⟩ bricks were mounted piece-by-piece onto the basic ⟨MoS3⟩ frame to stepwise construct the incomplete cubane core ⟨MoFe2S3Cl⟩ and the complete cubane core ⟨MoFe3S3Cl⟩. The significantly elongated Fe-Cl bonds for the bridging chlorides in the ⟨MoFe2S3Cl⟩ and ⟨MoFe3S3Cl⟩ cores permit ligand metatheses to introduce 2p donors at the bridging sites, which used to be a challenge in traditional iron-sulfur chemistry. Therefore, in subsequent controlled reactions, the bridging ⟨Cl⟩ bricks of the ⟨MoFe2S3Cl⟩ and ⟨MoFe3S3Cl⟩ frames could be easily replaced by ⟨N⟩ , ⟨O⟩, or ⟨S⟩ bricks to generate the ⟨MoFe2S3N⟩, ⟨MoFe2S3O⟩, ⟨MoFe3S3N⟩, and ⟨MoFe3S4⟩ cluster cores, demonstrating more choices for the LEGO synthetic strategy. The series of Mo-Fe-S clusters and their derivatives, together with related synthetic strategies, offers a good platform and methodology for biomimetic chemistry in relation to nitrogenase, especially the FeMo cofactor.

13.
J Colloid Interface Sci ; 607(Pt 1): 210-218, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34500420

RESUMO

Facing the inherent defects of magnetic materials, the research of non-magnetic absorbers has gradually become a new direction in the research of microwave absorbers to fit the requirements of a new generation for high strength, wide effective absorption bandwidth. Herein, the liquid metal and copper (LC) composite micro-particles with multiple heterojunctions and core-shell structure, which have an excellent performance of microwave absorption (MA), were prepared by simply coating liquid metal on copper and then annealing. These special LC composite micro-particles exhibit excellent MA performance with the optimal reflection loss of -39.6 dB at thickness of 2.1 mm and a maximum effective absorption bandwidth of 4.96 GHz at thickness of 2.5 mm. The high MA performance of the LC composite particles are due to the enhancement of dielectric loss, including dipolar, interfacial, and dielectric polarization, which is caused by the special core-shell structure, multiple interfaces and heterojunctions. Furthermore, the multiple reflection/scattering of microwaves among particles or on the surface of particles also benefit to the high MA performance. Therefore, this study provides a facile method to construct multiple metal heterojunctions which have great prospects in microwave absorption applications.

14.
Hepatobiliary Pancreat Dis Int ; 21(4): 325-333, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34674948

RESUMO

BACKGROUND: Macrovascular invasion (MaVI) occurs in nearly half of hepatocellular carcinoma (HCC) patients at diagnosis or during follow-up, which causes severe disease deterioration, and limits the possibility of surgical approaches. This study aimed to investigate whether computed tomography (CT)-based radiomics analysis could help predict development of MaVI in HCC. METHODS: A cohort of 226 patients diagnosed with HCC was enrolled from 5 hospitals with complete MaVI and prognosis follow-ups. CT-based radiomics signature was built via multi-strategy machine learning methods. Afterwards, MaVI-related clinical factors and radiomics signature were integrated to construct the final prediction model (CRIM, clinical-radiomics integrated model) via random forest modeling. Cox-regression analysis was used to select independent risk factors to predict the time of MaVI development. Kaplan-Meier analysis was conducted to stratify patients according to the time of MaVI development, progression-free survival (PFS), and overall survival (OS) based on the selected risk factors. RESULTS: The radiomics signature showed significant improvement for MaVI prediction compared with conventional clinical/radiological predictors (P < 0.001). CRIM could predict MaVI with satisfactory areas under the curve (AUC) of 0.986 and 0.979 in the training (n = 154) and external validation (n = 72) datasets, respectively. CRIM presented with excellent generalization with AUC of 0.956, 1.000, and 1.000 in each external cohort that accepted disparate CT scanning protocol/manufactory. Peel9_fos_InterquartileRange [hazard ratio (HR) = 1.98; P < 0.001] was selected as the independent risk factor. The cox-regression model successfully stratified patients into the high-risk and low-risk groups regarding the time of MaVI development (P < 0.001), PFS (P < 0.001) and OS (P = 0.002). CONCLUSIONS: The CT-based quantitative radiomics analysis could enable high accuracy prediction of subsequent MaVI development in HCC with prognostic implications.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinoma Hepatocelular/diagnóstico por imagem , Carcinoma Hepatocelular/cirurgia , Humanos , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/cirurgia , Prognóstico , Estudos Retrospectivos , Tomografia Computadorizada por Raios X/métodos
15.
J Cancer ; 12(22): 6921-6930, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34659579

RESUMO

Background: Epigenetic aberrations of tumor suppressor genes (TSGs), particularly DNA methylation, are frequently involved in the pathogenesis of gastric cancer (GC). Previous studies have shown that PRDM5 is methylated and silenced in GC. However, the role of PRDM5 in GC progression has not been explored. Methods: The expression and epigenetic alterations of PRDM5 in GC were analyzed in public datasets. The mRNA and protein expression of PRDM5 in fresh tissues were detected by semi-quantitative PCR and Western blot. And expression of PRDM5 in gastric paracarcinoma and carcinoma tissues from 162 patients was detected by immunohistochemistry (IHC) and assessed the association with different clinicopathological features. The prognostic value of PRDM5 in GC patients was evaluated using Kaplan-Meier plotter. We also studied promoter region methylation of PRDM5 in GC by methylation-specific PCR (MSP). The effects of PRDM5 on cell proliferation and migration were conducted by functional experiments in vitro. Results: The expression of PRDM5 was downregulated in GC, and that was associated with poor survival and tumor progression. And PRDM5 expression was found to be an independent prognostic factor for GC. We also found that the methylation of PRDM5 promoter was closely related to the histopathological types and the progression of tumors through the public relations database. In vitro, ectopical expression of PRDM5 inhibited the growth of tumor cells, while knockdown of PRDM5 increased the proliferation and migration of tumor cells. Conclusion: These results suggest that PRDM5 may be a novel TSG methylated in GC that plays important roles in GC development. And we found PRDM5 as a potential survival biomarker for GC, especially in well differentiated GC. PRDM5 expression was significantly correlated with tumor stage and histological type.

16.
Dalton Trans ; 50(20): 6840-6847, 2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-33912872

RESUMO

Structural mimicking of the nitrogenase FeMo cofactor has long been a challenge in synthetic inorganic chemistry and bioinorganic chemistry. This already very tough task had become even harder after the discovery of an interstitial light atom, which was later evidenced to be carbide. From a synthetic point of view, to introduce such a 2p atom into the core of a Fe-S cluster would have to overcome the coordination competition from overwhelming sulfide ligands. Recently, we have reported a controlled synthetic strategy named redox metathesis based on template-assisted structure design, and have successfully synthesized a couple of nitride-incorporated edge-bridged double cubane (N-EBDC) W-Fe-S clusters. In this work, we have systematically studied the terminal ligand substitutions of heteroleptic N-EBDC clusters, utilizing ethanethiolate, thiophenolate, p-thiocresolate, azide, and methoxide to replace the terminally bound chloride ligands. Structural analysis of this family of N-EBDC clusters reveals that different terminal ligands affect the fine structures of the cluster cores at different levels. Further studies by cyclic voltammetry indicate that these N-EBDC clusters with distinct terminal ligands exhibit different redox behaviors, furnishing in-depth information on the electronic structure of these clusters potentially related to their reactivity. This study provided useful information for the investigation of nitrogenase related Fe-S clusters toward structural and functional mimicking of the nitrogenase FeMo cofactor.

17.
Chemosphere ; 276: 130084, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33740650

RESUMO

Anthropogenic NOx, SO2 and CO2 emission from the fossil-fuel-fired power plants has aroused growing attention. This study investigated the removal performance of CO2, SO2 and NOx in flue gas as well as conversion efficiency of nitric- and sulfur-compounds in liquid phase in a biofilter. In order to develop the potential of the biofilter, simulative industry wastewater was employed as the spray solution. The satisfactory flue gas removal performance (75.23% CO2, 100% SO2 and 82.81% NO) were achieved under the optimal operating conditions of biofilter: initial solution pH of 9 and liquid-gas ratio (L/G) of 3. The gas film mass transfer coefficients (kGa) results showed that the resistance of gas mass transfer was decreased with increasing the pH value and L/G ratio, respectively. The final transformation product of NO was mostly N2 while about 78% SO2 was converted to elemental sulfur. The microbial community analysis results showed that the relative abundance of bacteria with denitrification capacity was increased by 3.05% which might have contributed to the conversion of NO intermediates products in present study. Collectively, this biofilter system achieve a better flue gas removal performance via the proper operation system, which provides an economic feasible strategy of flue gas purification and increases potential for industrial application.


Assuntos
Dióxido de Carbono , Dióxido de Enxofre , Bactérias/genética , Óxido Nítrico , Centrais Elétricas
18.
ACS Nano ; 15(1): 1497-1508, 2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33372769

RESUMO

Optoelectronic synapses integrating synaptic and optical-sensing functions exhibit large advantages in neuromorphic computing for visual information processing and complex learning, recognition, and memory in an energy-efficient way. However, electric stimulation is still essential for existing optoelectronic synapses to realize bidirectional weight-updating, restricting the processing speed, bandwidth, and integration density of the devices. Herein, a two-terminal optical synapse based on a wafer-scale pyrenyl graphdiyne/graphene/PbS quantum dot heterostructure is proposed that can emulate both the excitatory and inhibitory synaptic behaviors in an optical pathway. The simple device architecture and low-dimensional features of the heterostructure endow the optical synapse with robust flexibility for wearable electronics. This optical synapse features a linear and symmetric conductance-update trajectory with numerous conductance states and low noise, which facilitates the demonstration of accurate and effective pattern recognition with a strong fault-tolerant capability even at bending states. A series of logic functions and associative learning capabilities have been demonstrated by the optical synapses in optical pathways, significantly enhancing the information processing capability for neuromorphic computing. Moreover, an integrated visible information sensing memory processing system based on the optical synapse array is constructed to perform real-time detection, in situ image memorization, and distinction tasks. This work is an important step toward the development of optogenetics-inspired neuromorphic computing and adaptive parallel processing networks for wearable electronics.

19.
Surg Innov ; 28(4): 419-426, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33275087

RESUMO

Introduction. Complex anal fistula (CAF) is a challenging anorectal condition. Although numerous treatments for its management have been proposed, none is ideal. Herein, we investigated the clinical efficacy of video-assisted modified ligation of the intersphincteric fistula tract (LIFT) in comparison with the incision-thread-drawing procedure for Parks type II anal fistulas. Methods. Male and female adult patients with Parks type II anal fistula who were randomized to receive one of two procedures in the Anorectal Surgery Unit of the Affiliated People's Hospital of Ningbo University: video-assisted modified LIFT (test group, 30 cases) or incision thread drawing (control group, 30 cases). Healing and recurrence, postoperative pain, and postoperative autonomous anal control ability were compared. Results. In the test group, the pain scores were significantly lower (P = .001) and wound healing was faster (P = .001). However, there were no marked differences between groups in operative efficacy or postoperative infection rate (all P > .05). We followed all the patients for more than 18 months, with the test group having lower Jorge-Wexner incontinence (P = .005) and fecal incontinence (FI) severity index (P = .000) scores. No significant difference in recurrence (χ2 = .351, P = .554) or healing (χ2 = 1.071, P = .301) rate was found between the 2 groups. Conclusions. We established that video-assisted modified LIFT is superior in repairing Parks type II anal fistulas, with less trauma, quicker recovery, and better anal function.


Assuntos
Incontinência Fecal , Fístula Retal , Adulto , Canal Anal , Feminino , Humanos , Ligadura , Masculino , Fístula Retal/cirurgia , Recidiva , Resultado do Tratamento
20.
Small ; 16(50): e2003593, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33230902

RESUMO

Achieving multifunctional van der Waals nanoelectronic devices on one structure is essential for the integration of 2D materials; however, it involves complex architectural designs and manufacturing processes. Herein, a facile, fast, and versatile laser direct write micro/nanoprocessing to fabricate diode, NPN (PNP) bipolar junction transistor (BJT) simultaneously based on a pre-fabricated black phosphorus/molybdenum disulfide heterostructure is demonstrated. The PN junctions exhibit good diode rectification behavior. Due to different carrier concentrations of BP and MoS2 , the NPN BJT, with a narrower base width, renders better performance than the PNP BJT. Furthermore, the current gain can be modulated efficiently through laser writing tunable base width WB , which is consistent with the theoretical results. The maximum gain for NPN and PNP is found to be ≈41 (@WB ≈600 nm) and ≈12 (@WB ≈600 nm), respectively. In addition, this laser write processing technique also can be utilized to realize multifunctional WSe2 /MoS2 heterostructure device. The current work demonstrates a novel, cost-effective, and universal method to fabricate multifunctional nanoelectronic devices. The proposed approach exhibits promise for large-scale integrated circuits based on 2D heterostructures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...