Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gastroenterol Res Pract ; 2023: 2479192, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37008256

RESUMO

Liver fibrosis is a wound-healing response to chronic injury, which may result in cirrhosis and liver failure. Studies have been carried on the mechanisms and pathogenesis of liver fibrosis. However, the potential cell-specific expressed marker genes involved in fibrotic processes remain unknown. In this study, we combined a publicly accessible single-cell transcriptome of human liver with microarray datasets to evaluate the cell-specific expression patterns of differentially expressed genes in the liver. We noticed that EMP1 (epithelial membrane protein 1) is significantly active not only in CCl4 (carbon tetrachloride)-treated mouse liver fibrosis but also in BDL (bile duct ligation)-induced liver fibrosis and even in human fibrotic liver tissues such as alcoholic hepatitis, NASH (nonalcoholic steatohepatitis), and advanced stage liver fibrosis. Furthermore, we demonstrated that EMP1 is a specific fibrotic gene expressed in HSCs (hepatic stellate cells) and endothelial cells using the Protein Atlas single-cell transcriptome RNA-sequencing clustering. Its expression was significantly elevated in fibrotic HSCs or CCl4 and NASH-induced fibroblasts. Previous research revealed that EMP1 plays a role in proliferation, migration, metastasis, and tumorigeneses in different cancers via a variety of mechanisms. Because HSC activation and proliferation are two important steps following liver injury, it would be interesting to investigate the role of EMP1 in these processes. All of this information suggested that EMP1 could be used as a novel fibrotic liver marker and a possible target in the future.

2.
Cancers (Basel) ; 14(19)2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36230665

RESUMO

Human interleukin 2 (IL-2) has shown impressive results as a therapeutic agent for cancer. However, IL-2-based cancer therapy is limited by strong Treg amplification owing to its high binding affinity to IL-2 receptor α (IL-2Rα) and its short half-life owing to its small molecular size. In this study, we solved these problems using a covalent modification strategy of the IL-2 variant, i.e., substituting cysteine (C) for lysine (K) at position 35, using octadecanedicarboxylic acid through maleimide chemistry, creating IL-2K35C-moFA. IL-2K35C-moFA was equipotent to human IL-2 wild type (IL-2WT) in activating tumor-killing CD8+ memory effector T cells (CD8+ T) and NK cells bearing the intermediate affinity IL-2 receptors, and less potent than IL-2WT on CTLL-2 cells bearing the high-affinity IL-2 receptors. Moreover, it was shown to support the preferential activation of IL-2 receptor ß (IL-2Rß) over IL-2Rα because of the mutation and fatty acid conjugation. In a B16F10 murine tumor model, IL-2K35C-moFA showed efficacy as a single dose and provided durable immunity for 1 week. Our results support the further evaluation of IL-2K35C-moFA as a novel cancer immunotherapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...