Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
2.
Dev Cell ; 59(9): 1132-1145.e6, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38531357

RESUMO

Neurons must be made in the correct proportions to communicate with the appropriate synaptic partners and form functional circuits. In the Drosophila visual system, multiple subtypes of distal medulla (Dm) inhibitory interneurons are made in distinct, reproducible numbers-from 5 to 800 per optic lobe. These neurons are born from a crescent-shaped neuroepithelium called the outer proliferation center (OPC), which can be subdivided into specific domains based on transcription factor and growth factor expression. We fate mapped Dm neurons and found that more abundant neural types are born from larger neuroepithelial subdomains, while less abundant subtypes are born from smaller ones. Additionally, morphogenetic Dpp/BMP signaling provides a second layer of patterning that subdivides the neuroepithelium into smaller domains to provide more granular control of cell proportions. Apoptosis appears to play a minor role in regulating Dm neuron abundance. This work describes an underappreciated mechanism for the regulation of neuronal stoichiometry.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Neurônios , Animais , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Neurônios/metabolismo , Neurônios/citologia , Drosophila melanogaster/metabolismo , Lobo Óptico de Animais não Mamíferos/metabolismo , Lobo Óptico de Animais não Mamíferos/citologia , Transdução de Sinais , Vias Visuais/metabolismo , Apoptose , Proteínas Morfogenéticas Ósseas/metabolismo , Padronização Corporal , Interneurônios/metabolismo , Interneurônios/citologia , Regulação da Expressão Gênica no Desenvolvimento , Contagem de Células , Proliferação de Células , Neurogênese/fisiologia
3.
bioRxiv ; 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38370610

RESUMO

The medulla is the largest neuropil of the Drosophila optic lobe. It contains about 100 neuronal types that have been comprehensively characterized morphologically and molecularly. These neuronal types are specified from a larval neuroepithelium called the Outer Proliferation Center (OPC) via the integration of temporal, spatial, and Notch-driven mechanisms. Although we recently characterized the temporal windows of origin of all medulla neurons, as well as their Notch status, their spatial origins remained unknown. Here, we isolated cells from different OPC spatial domains and performed single-cell mRNA-sequencing to identify the neuronal types produced in these domains. This allowed us to characterize in a high-throughput manner the spatial origins of all medulla neurons and to identify two new spatial subdivisions of the OPC. Moreover, our work shows that the most abundant neuronal types are produced from epithelial domains of different sizes despite being present in a similar number of copies. Combined with our previously published scRNA-seq developmental atlas of the optic lobe, our work opens the door for further studies on how specification factor expression in progenitors impacts gene expression in developing and adult neurons.

4.
J Mov Disord ; 17(1): 1-14, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37989149

RESUMO

Circadian disruption is being increasingly recognized as a critical factor in the development and progression of Parkinson's disease (PD). This review aims to provide an in-depth overview of the relationship between circadian disruption and PD by exploring the molecular, cellular, and behavioral aspects of this interaction. This review will include a comprehensive understanding of how the clock gene system and transcription-translation feedback loops function and how they are diminished in PD. The article also discusses the role of clock genes in the regulation of circadian rhythms, as well as the impact of clock gene dysregulation on mitochondrial function, oxidative stress, and neuroinflammation, including the microbiota-gut-brain axis, which have all been proposed as being crucial mechanisms in the pathophysiology of PD. Finally, this review highlights potential therapeutic strategies targeting the clock gene system and circadian rhythm for the treatment of PD.

5.
Ann Emerg Med ; 82(4): e159-e160, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37739758
6.
Front Aging Neurosci ; 15: 1235840, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37744396

RESUMO

Background: Parkinson's disease (PD) is a complex neurodegenerative disease with an elusive etiology that involves the interaction between genetic, behavioral, and environmental factors. Recently, epigenetic modifications, particularly DNA methylation, have been recognized to play an important role in the onset of PD. Glycoprotein non-metastatic melanoma protein B (GPNMB), a type I transmembrane protein crucial for immune cell activation and maturation, has emerged as a potential biomarker for the risk of PD. This research aims to investigate the influence of exercise and gender on the regulation of methylation levels of GPNMB cg17274742 in individuals. Methods: We analyze data from 2,474 participants in the Taiwan Biobank, collected from 2008 and 2016. Methylation levels at the GPNMB cg17274742 CpG site were measured using Illumina Infinium MethylationEPIC beads. After excluding individuals with incomplete data or missing information on possible risk factors, our final analysis included 1,442 participants. We used multiple linear regression models to assess the association between sex and exercise with adjusted levels of GPNMB cg17274742 for age, BMI, smoking, drinking, coffee consumption, serum uric acid levels, and hypertension. Results: Our results demonstrated that exercise significantly influenced the methylation levels of GPNMB cg17274742 in males (ß = -0.00242; p = 0.0026), but not in females (ß = -0.00002362; p = 0.9785). Furthermore, male participants who exercised showed significantly lower levels of methylation compared to the reference groups of the female and non-exercising reference groups (ß = -0.00357; p = 0.0079). The effect of the interaction between gender and exercise on the methylation of GPNMB cg17274742 was statistically significant (p = 0.0078). Conclusion: This study suggests that gender and exercise can modulate GPNMB cg17274742, with hypomethylation observed in exercise men. More research is needed to understand the underlying mechanisms and implications of these epigenetic changes in the context of risk and prevention strategies.

7.
Front Neurol ; 14: 1170837, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37456632

RESUMO

Background: Chorea is a movement disorder characterized by abrupt, rapid, and uncontrollable, random movements from one part of the body to another with motor impersistence. Sporadic chorea is rarely caused by either thyrotoxicosis or Moyamoya disease (MMD). Methods and results: In this case report, we describe a female patient with chorea with the rare coexistence of Graves' disease and Moyamoya disease. Tc-99m ethyl cysteinate dimer (ECD) brain perfusion single-photon emission computed tomography (SPECT) showed mild to moderate hypoperfusion in bilateral frontal and left temporal regions. After administering dexamethasone 20 mg for 5 days, her choreic movement symptoms recovered rapidly. Conclusion: Although uncommon, thyrotoxicosis and Moyamoya disease can co-occur, especially in Asian female adults. Excessive thyroid hormones contribute to the dysregulation of neurotransmitters in basal ganglia-thalamocortical circuits. Moyamoya disease is responsible for ischemic changes affecting the excitatory-inhibitory circuits between the basal ganglia and the neocortex. Under a state of coexistence, thyrotoxicosis exaggerates cerebral metabolism, aggravating the impaired cerebral perfusion induced by Moyamoya disease. Moreover, inflammatory reactions caused by thyroid autoantibodies may also promote the progression of Moyamoya disease. In our experience, treatment with steroids may not only synergize the anti-thyroid effect but may also be a way to modulate the neurotransmitters within the basal ganglia or restore cerebral perfusion. We suggest that evaluation of the thyroid function status in Moyamoya disease is essential.

8.
Proc Natl Acad Sci U S A ; 120(32): e2307451120, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37523539

RESUMO

Cell-type-specific tools facilitate the identification and functional characterization of the distinct cell types that form the complexity of neuronal circuits. A large collection of existing genetic tools in Drosophila relies on enhancer activity to label different subsets of cells and has been extremely useful in analyzing functional circuits in adults. However, these enhancer-based GAL4 lines often do not reflect the expression of nearby gene(s) as they only represent a small portion of the full gene regulatory elements. While genetic intersectional techniques such as the split-GAL4 system further improve cell-type-specificity, it requires significant time and resources to screen through combinations of enhancer expression patterns. Here, we use existing developmental single-cell RNA sequencing (scRNAseq) datasets to select gene pairs for split-GAL4 and provide a highly efficient and predictive pipeline (scMarco) to generate cell-type-specific split-GAL4 lines at any time during development, based on the native gene regulatory elements. These gene-specific split-GAL4 lines can be generated from a large collection of coding intronic MiMIC/CRIMIC lines or by CRISPR knock-in. We use the developing Drosophila visual system as a model to demonstrate the high predictive power of scRNAseq-guided gene-specific split-GAL4 lines in targeting known cell types, annotating clusters in scRNAseq datasets as well as in identifying novel cell types. Lastly, the gene-specific split-GAL4 lines are broadly applicable to any other Drosophila tissue. Our work opens new avenues for generating cell-type-specific tools for the targeted manipulation of distinct cell types throughout development and represents a valuable resource for the Drosophila community.


Assuntos
Proteínas de Drosophila , Fatores de Transcrição , Animais , Fatores de Transcrição/metabolismo , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Técnicas Genéticas , Análise de Sequência de RNA , Drosophila melanogaster/metabolismo
9.
Science ; 380(6650): eadg0934, 2023 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-37319212

RESUMO

Aging is characterized by a decline in tissue function, but the underlying changes at cellular resolution across the organism remain unclear. Here, we present the Aging Fly Cell Atlas, a single-nucleus transcriptomic map of the whole aging Drosophila. We characterized 163 distinct cell types and performed an in-depth analysis of changes in tissue cell composition, gene expression, and cell identities. We further developed aging clock models to predict fly age and show that ribosomal gene expression is a conserved predictive factor for age. Combining all aging features, we find distinctive cell type-specific aging patterns. This atlas provides a valuable resource for studying fundamental principles of aging in complex organisms.


Assuntos
Envelhecimento , Senescência Celular , Drosophila melanogaster , Animais , Envelhecimento/genética , Perfilação da Expressão Gênica , Transcriptoma , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Drosophila melanogaster/fisiologia , Atlas como Assunto
10.
Mol Ther Nucleic Acids ; 32: 144-160, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37064776

RESUMO

Spinal muscular atrophy (SMA) is a neurodegenerative disease characterized by the selective loss of spinal motor neurons (MNs) and concomitant muscle weakness. Mutation of SMN1 is known to cause SMA, and restoring SMN protein levels via antisense oligonucleotide treatment is effective for ameliorating symptoms. However, this approach is hindered by exorbitant costs, invasive procedures, and poor treatment responses of some patients. Here, we seek to circumvent these hurdles by identifying reliable biomarkers that could predict treatment efficacy. We uncovered that MiR34 exhibits consistent downregulation during SMA progression in both human and rodent contexts. Importantly, Mir34 family-knockout mice display axon swelling and reduced neuromuscular junction (NMJ) endplates, recapitulating SMA pathology. Introducing MiR34a via scAAV9 improved the motor ability of SMNΔ7 mice, possibly by restoring NMJ endplate size. Finally, we observed a consistent decreasing trend in MiR34 family expression in the cerebrospinal fluid (CSF) of type I SMA patients during the loading phase of nusinersen treatment. Baseline CSF MiR34 levels before nusinersen injection proved predictive of patient motor skills 1 year later. Thus, we propose that MiR34 may serve as a biomarker of SMA since it is associated with the pathology and can help evaluate the therapeutic effects of nusinersen.

11.
bioRxiv ; 2023 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-36778312

RESUMO

Cell-type-specific tools facilitate the identification and functional characterization of distinct cell types, which underly the complexity of neuronal circuits. A large collection of existing genetic tools in Drosophila relies on enhancer activity to label different subsets of cells. These enhancer-based GAL4 lines often fail to show a predicable expression pattern to reflect the expression of nearby gene(s), partly due to an incomplete capture of the full gene regulatory elements. While genetic intersectional technique such as the split-GAL4 system further improve cell-type-specificity, it requires significant time and resource to generate and screen through combinations of enhancer expression patterns. In addition, since existing enhancer-based split-GAL4 lines that show cell-type-specific labeling in adult are not necessarily active nor specific in early development, there is a relative lack of tools for the study of neural development. Here, we use an existing single-cell RNA sequencing (scRNAseq) dataset to select gene pairs and provide an efficient pipeline to generate cell-type-specific split-GAL4 lines based on the native genetic regulatory elements. These gene-specific split-GAL4 lines can be generated from a large collection of coding intronic MiMIC/CRIMIC lines either by embryo injection or in vivo cassette swapping crosses and/or CRISPR knock-in at the N or C terminal of the gene. We use the developing Drosophila visual system as a model to demonstrate the high prediction power of scRNAseq-guided gene specific split-GAL4 lines in targeting known cell types. The toolkit allows efficient cluster annotation in scRNAseq datasets but also the identification of novel cell types. Lastly, the gene-specific split-GAL4 lines are broadly applicable to Drosophila tissues. Our work opens new avenues for generating cell-type-specific tools for the targeted manipulation of distinct cell types throughout development and represents a valuable resource to the fly research community. Significance Statement: Understanding the functional role of individual cell types in the nervous systems has remained a major challenge for neuroscience researchers, partly due to incomplete identification and characterization of underlying cell types. To study the development of individual cell types and their functional roles in health and disease, experimental access to a specific cell type is often a prerequisite. Here, we establish an experimental pipeline to generate gene-specific split-GAL4 guided by single-cell RNA sequencing datasets. These lines show high accuracy for labeling targeted cell types from early developmental stages to adulthood and can be applied to any tissues in Drosophila. The collection of gene-speicifc-split-GAL4 will provide a valuable resource to the entire fly research community.

12.
Nat Commun ; 14(1): 46, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36596814

RESUMO

Spinal motor neurons (MNs) integrate sensory stimuli and brain commands to generate movements. In vertebrates, the molecular identities of the cardinal MN types such as those innervating limb versus trunk muscles are well elucidated. Yet the identities of finer subtypes within these cell populations that innervate individual muscle groups remain enigmatic. Here we investigate heterogeneity in mouse MNs using single-cell transcriptomics. Among limb-innervating MNs, we reveal a diverse neuropeptide code for delineating putative motor pool identities. Additionally, we uncover that axial MNs are subdivided into three molecularly distinct subtypes, defined by mediolaterally-biased Satb2, Nr2f2 or Bcl11b expression patterns with different axon guidance signatures. These three subtypes are present in chicken and human embryos, suggesting a conserved axial MN expression pattern across higher vertebrates. Overall, our study provides a molecular resource of spinal MN types and paves the way towards deciphering how neuronal subtypes evolved to accommodate vertebrate motor behaviors.


Assuntos
Neurônios Motores , Transcriptoma , Animais , Camundongos , Humanos , Transcriptoma/genética , Neurônios Motores/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Músculo Esquelético/metabolismo , Embrião de Mamíferos/metabolismo , Medula Espinal/metabolismo , Mamíferos/metabolismo , Proteínas Repressoras/metabolismo , Proteínas Supressoras de Tumor/metabolismo
13.
Nat Commun ; 13(1): 5372, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36100597

RESUMO

Most genes in higher eukaryotes express isoforms with distinct 3' untranslated regions (3' UTRs), generated by alternative polyadenylation (APA). Since 3' UTRs are predominant locations of post-transcriptional regulation, APA can render such programs conditional, and can also alter protein sequences via alternative last exon (ALE) isoforms. We previously used 3'-sequencing from diverse Drosophila samples to define multiple tissue-specific APA landscapes. Here, we exploit comprehensive single nucleus RNA-sequencing data (Fly Cell Atlas) to elucidate cell-type expression of 3' UTRs across >250 adult Drosophila cell types. We reveal the cellular bases of multiple tissue-specific APA/ALE programs, such as 3' UTR lengthening in differentiated neurons and 3' UTR shortening in spermatocytes and spermatids. We trace dynamic 3' UTR patterns across cell lineages, including in the male germline, and discover new APA patterns in the intestinal stem cell lineage. Finally, we correlate expression of RNA binding proteins (RBPs), miRNAs and global levels of cleavage and polyadenylation (CPA) factors in several cell types that exhibit characteristic APA landscapes, yielding candidate regulators of transcriptome complexity. These analyses provide a comprehensive foundation for future investigations of mechanisms and biological impacts of alternative 3' isoforms across the major cell types of this widely-studied model organism.


Assuntos
Drosophila , Poliadenilação , Regiões 3' não Traduzidas/genética , Animais , Drosophila/genética , Masculino , Isoformas de Proteínas/genética , Análise de Sequência de RNA
14.
PLoS Biol ; 20(7): e3001680, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35797414

RESUMO

Early career researchers (ECRs) are important stakeholders leading efforts to catalyze systemic change in research culture and practice. Here, we summarize the outputs from a virtual unconventional conference (unconference), which brought together 54 invited experts from 20 countries with extensive experience in ECR initiatives designed to improve the culture and practice of science. Together, we drafted 2 sets of recommendations for (1) ECRs directly involved in initiatives or activities to change research culture and practice; and (2) stakeholders who wish to support ECRs in these efforts. Importantly, these points apply to ECRs working to promote change on a systemic level, not only those improving aspects of their own work. In both sets of recommendations, we underline the importance of incentivizing and providing time and resources for systems-level science improvement activities, including ECRs in organizational decision-making processes, and working to dismantle structural barriers to participation for marginalized groups. We further highlight obstacles that ECRs face when working to promote reform, as well as proposed solutions and examples of current best practices. The abstract and recommendations for stakeholders are available in Dutch, German, Greek (abstract only), Italian, Japanese, Polish, Portuguese, Spanish, and Serbian.


Assuntos
Pesquisadores , Relatório de Pesquisa , Humanos , Poder Psicológico
15.
Nature ; 604(7905): 316-322, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35388222

RESUMO

The brain consists of thousands of neuronal types that are generated by stem cells producing different neuronal types as they age. In Drosophila, this temporal patterning is driven by the successive expression of temporal transcription factors (tTFs)1-6. Here we used single-cell mRNA sequencing to identify the complete series of tTFs that specify most Drosophila optic lobe neurons. We verify that tTFs regulate the progression of the series by activating the next tTF(s) and repressing the previous one(s), and also identify more complex mechanisms of regulation. Moreover, we establish the temporal window of origin and birth order of each neuronal type in the medulla and provide evidence that these tTFs are sufficient to explain the generation of all of the neuronal diversity in this brain region. Finally, we describe the first steps of neuronal differentiation and show that these steps are conserved in humans. We find that terminal differentiation genes, such as neurotransmitter-related genes, are present as transcripts, but not as proteins, in immature larval neurons. This comprehensive analysis of a temporal series of tTFs in the optic lobe offers mechanistic insights into how tTF series are regulated, and how they can lead to the generation of a complete set of neurons.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Regulação da Expressão Gênica no Desenvolvimento , Lobo Óptico de Animais não Mamíferos , Fatores de Transcrição , Visão Ocular , Percepção Visual , Animais , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Lobo Óptico de Animais não Mamíferos/citologia , RNA-Seq , Análise de Célula Única , Fatores de Transcrição/metabolismo
16.
Front Neurosci ; 16: 854422, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35392413

RESUMO

The nervous system is one of the most sophisticated animal tissues, consisting of thousands of interconnected cell types. How the nervous system develops its diversity from a few neural stem cells remains a challenging question. Spatial and temporal patterning mechanisms provide an efficient model through which diversity can be generated. The molecular mechanism of spatiotemporal patterning has been studied extensively in Drosophila melanogaster, where distinct sets of transcription factors define the spatial domains and temporal windows that give rise to different cell types. Similarly, in vertebrates, spatial domains defined by transcription factors produce different types of neurons in the brain and neural tube. At the same time, different cortical neuronal types are generated within the same cell lineage with a specific birth order. However, we still do not understand how the orthogonal information of spatial and temporal patterning is integrated into the progenitor and post-mitotic cells to combinatorially give rise to different neurons. In this review, after introducing spatial and temporal patterning in Drosophila and mice, we discuss possible mechanisms that neural progenitors may use to integrate spatial and temporal information. We finally review the functional implications of spatial and temporal patterning and conclude envisaging how small alterations of these mechanisms can lead to the evolution of new neuronal cell types.

17.
Hear Res ; 413: 108254, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34020824

RESUMO

Mesenchymal stem cells (MSCs) can be isolated from different tissue origins, such as the bone marrow, the placenta, the umbilical cord, adipose tissues, and skin tissues. MSCs can secrete anti-inflammatory molecules and growth factors for tissue repair and remodeling. However, the ability of skin-derived MSCs (SMSCs) to repair cochlear damage and ameliorate hearing loss remains unclear. Cisplatin is a commonly used chemotherapeutic agent that has the side effect of ototoxicity due to inflammation and oxidative stress. This study investigated the effects of SMSCs on cisplatin-induced hearing loss in mice. Two independent experiments were designed for modeling cisplatin-induced hearing loss in mice, one for chronic toxicity (4 mg/kg intraperitoneal [IP] injection once per day for 5 consecutive days) and the other for acute toxicity (25 mg/kg IP injection once on day one). Three days after cisplatin injection, 1 × 106 or 3 × 106 SMSCs were injected through the tail vein. Data on auditory brain responses suggested that SMSCs could significantly reduce the hearing threshold of cisplatin-injected mice. Furthermore, immunohistochemical staining data suggested that SMSCs could significantly ameliorate the loss of cochlear hair cells, TUNEL-positive cells and cleaved caspase 3-positive cells in cisplatin-injected mice. Neuropathological gene analyses revealed that SMSCs treatment could downregulate the expression of cochlear genes involved in apoptosis, autophagy, chromatin modification, disease association, matrix remodeling, oxidative stress, tissue integrity, transcription, and splicing and unfolded protein responses. Additionally, SMSCs treatment could upregulate the expression of cochlear genes affecting the axon and dendrite structures, cytokines, trophic factors, the neuronal skeleton and those involved in carbohydrate metabolism, growth factor signaling, myelination, neural connectivity, neural transmitter release, neural transmitter response and reuptake, neural transmitter synthesis and storage, and vesicle trafficking. Results from TUNEL and caspase 3 staining further confirmed that cisplatin-induced apoptosis in cochlear tissues of cisplatin-injected mice could be reduced by SMSCs treatment. In conclusion, the evidence of the effects of SMSCs in favor of ameliorating ototoxicity-induced hearing loss suggests a potential clinical application.


Assuntos
Antineoplásicos , Perda Auditiva , Células-Tronco Mesenquimais , Administração Intravenosa , Animais , Antineoplásicos/metabolismo , Cisplatino/metabolismo , Cisplatino/toxicidade , Cóclea/patologia , Células Ciliadas Auditivas Externas/patologia , Perda Auditiva/induzido quimicamente , Perda Auditiva/metabolismo , Perda Auditiva/prevenção & controle , Células-Tronco Mesenquimais/metabolismo , Camundongos
18.
Front Neurol ; 12: 745265, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34956044

RESUMO

Background and Purpose: Cases of acute pesticide poisoning account for significant morbidity and mortality in developing countries; however, its burden in Taiwan remains unknown. The study examined acute pesticide poisoning (APP) involving adults in the central region of Taiwan, which is a mainly agricultural sub-urban area. Methods: The retrospective study evaluated the outcome and neurological sequelae of patients with APP in a Taiwanese cohort between April 2002 and February 2019. The pesticides were classified according to the Insecticide Resistance Action Committee Mode of Action (MoA) classification. The clinical characteristics, duration of hospitalization (days), follow-up duration (years), in-hospital mortality, neurological sequela, and imaging findings were recorded. Furthermore, multivariate logistic regression analyses were performed. Results: We identified 299 patients with APP comprising 206 (68.9%) adult men with a mean exposure age of 56.4 ± 16.8 years. Paraquat, organophosphates, pyrethroids, carmabates, and phosphinic acid were the most commonly known reported poisoning agents. The mortality rate was highest in users with paraquat (77.1%), followed by phosphinic acid (22.2%), carbamates (16.7%), and organophosphates (15.8%). After a mean follows up of 3.69 ± 2.26 years, the most common neurological sequela was a cognitive decline (56 among 225 survivors, 24.89%), peripheral neuropathy (11 among 225 survivors, 4.89%), tremor (10 among 225 survivors, 4.44%), ataxia (3/225, 1.33%), and parkinsonism feature (2/225, 0.89%). Brain imaging studies revealed basal ganglion lesions on CT or hyperintensity on T2-weighted MRI images in 26 among 46 patients (56.5%). The basal ganglion lesions on brain imaging had a positive correlation with neurological sequelae. Conclusion: Acute pesticide poisoning (APP)-related mortality is high especially paraquat intoxication, and cognitive decline, as well as peripheral neuropathy, were the most common neurological sequelae among survivors, which is highly correlated with basal ganglia lesions on brain imaging.

19.
Sci Rep ; 11(1): 13932, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34230598

RESUMO

We used light to irradiate skin-derived stem cells and tried to find any cellular protein alterations 24 h after illumination. A 266-nm laser with four intensities was used, and of the nine cell markers that were surveyed in our trials, only CD90 was downregulated at an intensity of 20 µJ for 10 s. Repeated illuminations from the 266-nm laser at seven intensities revealed that CD90 expression was downregulated 14.6-28.8%, depending on light intensity. The maximal effect was noted at an intensity of 30 µJ for 2 s. This innovative finding reveals that a 266-nm laser can regulate protein expression in skin-derivative stem cells.


Assuntos
Lasers , Pele/citologia , Células-Tronco/metabolismo , Células-Tronco/efeitos da radiação , Antígenos Thy-1/metabolismo , Células A549 , Biomarcadores/metabolismo , Fluorescência , Humanos , Nucleotídeos/metabolismo
20.
Front Neurol ; 12: 730244, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35111120

RESUMO

BACKGROUND/OBJECTIVE: This study was conducted to investigate the clinical characteristics and outcomes of patients with acute ischemic stroke and atrial fibrillation (AF) in intensive care units (ICUs). METHODS: In the Medical Information Mart for Intensive Care IV database, 1,662 patients with acute ischemic stroke were identified from 2008 to 2019. Of the 1,662 patients, 653 had AF. The clinical characteristics and outcomes of patients with and without AF were compared using propensity score matching (PSM). Furthermore, univariate and multivariate Cox regression analyzes were performed. RESULTS: Of the 1,662 patients, 39.2% had AF. The prevalence of AF in these patients increased in a stepwise manner with advanced age. Patients with AF were older and had higher Charlson Comorbidity Index, CHA2DS2-VASc Score, HAS-BLED score, and Acute Physiology Score III than those without AF. After PSM, 1,152 patients remained, comprising 576 matched pairs in both groups. In multivariate analysis, AF was not associated with higher ICU mortality [hazard ratio (HR), 0.95; 95% confidence interval (CI), 0.64-1.42] or in-hospital mortality (HR, 1.08; 95% CI, 0.79-1.47). In Kaplan-Meier analysis, no difference in ICU or in-hospital mortality was observed between patients with and without AF. CONCLUSIONS: AF could be associated with poor clinical characteristics and outcomes; however, it does not remain an independent short-term predictor of ICU and in-hospital mortality among patients with acute ischemic stroke after PSM with multivariate analysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...