Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 8(47): eabq5248, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36427318

RESUMO

We investigate flow-induced structural organization in a dilute suspension of tumbling red blood cells (RBCs) under confined shear flow. For small Reynolds (Re = 0.1) and capillary numbers (Ca), with fully coupled hydrodynamic interaction (HI) and without interparticle adhesion, we find that HI between the biconcave discoid particles prompts the formation of layered RBC chains and synchronized rotating RBC pairs, referred here as "waltzing doublets." As the volume fraction ϕ increases, more waltzing doublets appear in RBC files. Stronger shear stress disrupts structural arrangements at higher Ca. We find that the flow-induced organization of waltzing doublets changes how the suspension viscosity varies with ϕ qualitatively. The intrinsic viscosity is particularly sensitive to microstructural rearrangement, increasing (decreasing) with ϕ at low (high) Ca that correlates with the change in the fraction of doublets. We verified flow-induced collective motion with comparison to two-cell simulations in which the cell volume fraction is controlled by varying the domain volume.

2.
Polymers (Basel) ; 14(21)2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36365623

RESUMO

We investigate the enzymatic self-catalyzed gelation process in aiyu gel, a natural ion crosslinked polysaccharide gel. The gelation process depends on the concentration ratio (Rmax) of the crosslinking calcium ions and all galacturonic acid binding sites. The physical gel network formation relies on the assembly of calcium-polysaccharide crosslink bonds. The crosslinks are initially transient and through break-up/rebinding gradually re-organizing into long, stable junction zones. Our previous study formulated a reaction kinetics model to describe enzymatic activation, crosslinker binding, and crosslink microstructural reorganization, in order to model the complex growth of elasticity. In this study, we extend the theory for the time-dependent profile of complex moduli and examine the interplay of enzyme conversion, crosslink formation, and crosslink re-organization. The adjusted model captures how the gelation and structural rearrangement characteristic times vary with the polymer and calcium concentrations. Furthermore, we find that calcium ions act as both crosslinkers and dopants in the excess calcium ion scenario and the binding dynamics is determined by Rmax. This study provides perspectives on the dynamic binding behaviors of aiyu pectin gel system and the theoretical approach can be generalized to enzyme-catalyzed ionic gel systems.

3.
Langmuir ; 38(43): 13195-13205, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36255233

RESUMO

The Young-Laplace equation suggests that nanosized gas clusters would dissolve under the effects of perturbation. The fact that nanobubbles are observed raises questions as to the mechanism underlying their stability. In the current study, we used all-atom molecular dynamics simulations to investigate the gas-water interfacial properties of gas clusters. We employed the instantaneous coarse-graining method to define the fluctuating boundaries and analyze the deformation of gas clusters. Fourier transform analysis of the cluster morphology revealed that the radius and morphology deformation variations exhibit power law relationships with the vibrational frequency, indicating that the surface energy dissipated through morphology variations. Increasing pressure in the liquid region was found to alter the network of water molecules at the interface, whereas increasing pressure in the gas region did not exhibit this effect. The overall gas concentration was oversaturated and proportional to the gas density inside the clusters. However, the result of comparison with Henry's law reveals that the gas pressure at the interface reduced by the interfacial effects is much lower than that inside the gas region, thus reducing the demanding degree of oversaturation. Originating from the interfacial charge allocation, the magnitude of the electrostatic stress is greater than that of the gas pressure inside the cluster. However, the magnitude of the reversed tension induced by electrostatic stress is far below the value of interfacial tension. The potential of mean force (PMF) profiles revealed that a barrier potential at the interface hindered gas particles from escaping the cluster. Several effects contribute to stabilizing the gas clusters in water, including high-frequency morphological deformation, electrostatic stress, reduced interfacial tension, and gas oversaturation conditions. Our results suggest that gas clusters can exist in water under gas oversaturation conditions in the absence of hydrophobic contaminants or pinning charges at interfaces.

4.
PNAS Nexus ; 1(4): pgac127, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36714876

RESUMO

Pectin polymers are considered for lithium-ion battery electrodes. To understand the performance of pectin as an applied buffer layer, the electrical, magnetic, and optical properties of pectin films are investigated. This work describes a methodology for creating pectin films, including both pristine pectin and Fe-doped pectin, which are optically translucent, and explores their potential for lithium-ion battery application. The transmission response is found extended in optimally Fe-doped pectin, and prominent modes for cation bonding are identified. Fe doping enhances the conductivity observed in electrochemical impedance spectroscopy, and from the magnetic response of pectin evidence for Fe3+ is identified. The Li-ion half-cell prepared with pectin as binder for anode materials such as graphite shows stable charge capacity over long cycle life, and with slightly higher specific capacity compare with the cell prepared using polyvinylidene fluoride (PVDF) as binder. A novel enhanced charging specific capacity at a high C-rate is observed in cells with pectin binder, suggesting that within a certain rate (∼5 C), pectin has higher capacity at faster charge rates. The pectin system is found as a viable base material for organic-inorganic synthesis studies.

5.
Langmuir ; 37(8): 2759-2770, 2021 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-33595315

RESUMO

Gas aggregation and formation of interfacial nanobubbles (INBs) provide challenges and opportunities in the operation of micro-/nanofluidic devices. In the current study, we used molecular dynamics(MD) simulations to investigate the effects of hydrophobicity and various homogeneous surface conditions on gas aggregation and INB stability with a series of 3D argon-water-solid and water-solid systems. Among various signatures of surface hydrophobicity, the potential of mean force (PMF) minima exhibited the strongest correlation with the water molecular orientation at the liquid-solid interface, compared to the depletion layer width and the droplet contact angle. Our results indicated that argon aggregation on the substrate was a function of hydrophobicity as well as competition between gas-solid and water-solid PMFs. Thus, one precondition for gas aggregation on a surface is that the free energy minima of gas induced by the surface be much lower than that induced by water. We found that although the presence of gas molecules had little effect on the measures of wettability, it enhanced density fluctuations near liquid-solid interfaces. The PMF of gas along the surface tangential plane exhibited a small energy barrier between the epitaxial gas layer (EGL) in the bubble and the gas enrichment layer (GEL) in the liquid, which may benefit nanobubble stability. Much lower PMF in the EGL compared to that in the GEL indicated that gas molecules could migrate from the GEL to the nanobubble basement. However, density fluctuations enhanced by the GEL could reduce the energy barrier, thus reducing the stability of INBs.

6.
J Chem Phys ; 154(2): 024901, 2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33445888

RESUMO

We investigate the rich phase behavior of strongly confined semi-flexible (SFC) polymer-nanoparticle (NP) systems using the graphics processing unit accelerated Langevin dynamics simulation. Hard nanoparticles (HNP) that repel each other and ideal nanoparticles (INP) that do not interact with the same species are used as model additives to a strongly confined semiflexible polymer fluid. Both types of NPs exclude the monomer beads in the same way, but they have qualitatively different effects on the SFC isotropic-nematic (I-N) transition. For the total volume fraction ϕtot < 0.16, adding a low volume fraction of HNPs (ϕp) disrupts the long range nematic order of the polymers, whereas adding HNPs in a moderately packed system (0.16 < ϕtot < 0.32) facilitates polymer alignment due to the restricted polymer orientational degree of freedom. For dense packing (ϕtot > 0.32), polymers and NPs separate into layers along the slit height and the NPs form crystalline microdomains. In contrast, INP additives always promote inter-polymer alignment for low to moderate monomer volume fractions (ϕm). Furthermore, we found that INPs form a droplet-like fluid domain in dense nematic polymer systems.

7.
Biomicrofluidics ; 13(6): 064115, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31768201

RESUMO

The cell-free layer thickness of an aggregating red blood cell (RBC) suspension in a rectangular microchannel is investigated by hybrid fluid-particle numerical modeling. Several factors affect the suspension viscosity, cell-free layer thickness, and the cell aggregate distribution. These include the hematocrit, vessel size, red cell stiffness, aggregation interaction, and shear rate. In particular, the effect of the shear rate on the cell-free layer thickness is controversial. We found that the suspension viscosity increases along with a decrease in the cell-free layer thickness as the shear rate increases for aggregating model RBCs at low shear rates. At moderate to high shear rates, the cell-free layer thickness increases with the increasing shear rate from medium to strong shear flow for both 10% and 20% red blood cell suspensions.

8.
Langmuir ; 34(50): 15360-15369, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30480451

RESUMO

We investigated how the stability of aqueous argon surface nanobubbles on hydrophobic surfaces depends on gas adsorption, solid-gas interaction energy, and the bulk gas concentration using molecular dynamics simulation with the SPC/E water solvent. We observed stable surface nanobubbles without surface pinning sites for longer than 160 ns, contrary to previous findings using monoatomic Lennard-Jones solvent. In addition, the hydrophobicity of a substrate has an effect to reduce the requirement degree of oversaturation on water bulk. We found that the gas enrichment layer, gas adsorption monolayer on the hydrophobic substrate, and water hydrogen bonding near the interface are likely necessary conditions for nanobubble stability. We concluded that gas nanobubble stability does not necessarily require three-phase pinning sites.

9.
Soft Matter ; 14(36): 7382-7389, 2018 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-30203825

RESUMO

We investigated the nematic to smectic phase transition for strongly confined semiflexible polymer solutions in slit-like confinements using GPU-accelerated Langevin dynamics. We characterized the phase transitions from the nematic to smectic phases for semi-flexible polymer solutions as the polymer density increased. The dependence for the lyotropic nematic to smectic transition can be collapsed by scaling exponents between 0.2 and 0.3. The smectic C phase is found for all the cases with the polymer orientation director tilted with respect to smectic layer lateral alignment. As the chain rigidity increases, the transition density decreases for systems in which the polymer persistence length (P) to slit height (H) ratios are 1.25, 2.5, 3.75, 5 and 25. We also characterized the polymer dynamics for the isotropic-nematic-smectic transitions. The overall polymer diffusivity decreased steadily as the polymer density increased. We observed anomalous polymer diffusion along the nematic director near the isotropic-nematic transition, similar to previously reported behavior for nematic-forming ellipsoids. Polymer diffusivity decreased sharply by two orders of magnitude upon the nematic-smectic transition.

10.
Small ; 14(40): e1802133, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30168661

RESUMO

Recent studies indicate that changing the physical properties of lipid bilayers may profoundly change the function of membrane proteins. Here, the effects of dissolved nitrogen and oxygen molecules on the mechanical properties and stability of lipid bilayers are investigated using differential confocal microscopy, atomic force microscopy, and molecular dynamics simulations. All experiments evidence the presence of dissolved air gas in lipid bilayers prepared without gas control. The lipid bilayers in degassed solutions are softer and less stable than those in ambient solutions. High concentrations of nitrogen increase the bending moduli and stability of the lipid bilayers and impede phase separation in ternary lipid bilayers. The effect of oxygen is less prominent. Molecular dynamics simulations indicate that higher nitrogen affinity accounts for increased rigidity. These findings have fundamental and wide implications for phenomena related to lipid bilayers and cell membranes, including the origin of life.


Assuntos
Bicamadas Lipídicas/química , Microscopia de Força Atômica , Microscopia Confocal , Simulação de Dinâmica Molecular , Oxigênio/química
11.
Nat Commun ; 9(1): 3696, 2018 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-30209389

RESUMO

The motile characteristics and mechanisms that drive the dissemination of diffuse large B-cell lymphoma (DLBCL) are elusive. Here, we show that DLBCL initiates dissemination through activating STAT3-mediated amoeboid migration. Mechanistically, STAT3 activates RHOH transcription, which competes with the RhoGDP dissociation inhibitor RhoGDIγ to activate RhoA. In addition, activated STAT3 regulates microtubule dynamics and releases ARHGEF2 to activate RhoA. Both the JAK inhibitor ruxolitinib and the microtubule stabilizer Taxol suppress DLBCL cell dissemination in vivo. A clinical DLBCL sample analysis shows that STAT3-driven amoeboid movement is particularly important for the transition from stage I to stage II. This study elucidates the mechanism of DLBCL dissemination and progression and highlights the potential of combating advanced DLBCL with a JAK/STAT inhibitor or microtubule stabilizer to reduce DLBCL motility; these findings may have a great impact on the development of patient-tailored treatments for DLBCL.


Assuntos
Linfoma Difuso de Grandes Células B/metabolismo , Fator de Transcrição STAT3/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular/genética , Movimento Celular/fisiologia , Imunoprecipitação da Cromatina , Recuperação de Fluorescência Após Fotodegradação , Humanos , Immunoblotting , Imuno-Histoquímica , Imunoprecipitação , Linfoma Difuso de Grandes Células B/genética , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , Fator de Transcrição STAT3/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
12.
Sci Rep ; 8(1): 7173, 2018 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-29740114

RESUMO

Open heart surgeries are common for treating ischemic and heart valve disease. During cardiac surgery, cardiopulmonary bypass (CPB) can temporarily take over the function of heart and lungs. However, elevated red blood cell (RBC) aggregation may lead to the common side-effects such as microinfarction. We investigated blood physical properties changes and the correlation between blood microstructure, viscoelastic response and biochemical changes following surgery with CPB. We examined shear-rate dependent blood viscosity, elasticity and RBC aggregate size in the pre-surgery disease state, post-surgery state and long-term recovery state of cardiac surgical patients. Within a week following surgery, the patient hematocrit was significantly lower due to CPB. Despite lower RBC concentration, the RBC aggregate shape became larger and more rounded, which is correlated to the elevated plasma fibrinogen related to systemic inflammatory response. During the same period, the hematocrit-adjusted low shear rate viscosity increased significantly, as did the yield stress, indicating more solid-like behavior for blood. Six months to one year later, all the physical and biochemical properties measured returned to baseline.


Assuntos
Viscosidade Sanguínea/fisiologia , Agregação Eritrocítica , Eritrócitos/patologia , Coração/fisiopatologia , Adulto , Idoso , Procedimentos Cirúrgicos Cardíacos/efeitos adversos , Ponte Cardiopulmonar/efeitos adversos , Eritrócitos/metabolismo , Feminino , Fibrinogênio/metabolismo , Humanos , Pulmão/metabolismo , Pulmão/fisiopatologia , Masculino , Pessoa de Meia-Idade
13.
Anal Chem ; 90(3): 2317-2325, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29293313

RESUMO

This paper reports a microfluidic viscometer with an integrated pressure sensor based on electrofluidic circuits, which are electrical circuits constructed by ionic liquid-filled microfluidic channels. The electrofluidic circuit provides a pressure-sensing scheme with great long-term and thermal stability. The viscosity of the tested fluidic sample is estimated by its flow resistance, which is a function of pressure drop, flow rate, and the geometry of the microfluidic channel. The viscometer can be exploited to measure viscosity of either Newtonian or non-Newtonian power-law fluid under various shear rates (3-500 1/s) and temperatures (4-70 °C) with small sample volume (less than 400 µL). The developed sensor-integrated microfluidic viscometer is made of poly(dimethylsiloxane) (PDMS) with transparent electrofluidic circuit, which makes it feasible to simultaneously image samples under tests. In addition, the entire device is disposable to prevent cross-contamination between samples, which is desired for various chemical and biomedical applications. In the experiments, viscosities of Newtonian fluids, glycerol water solutions with different concentrations and a mixture of pyrogallol and sodium hydroxide (NaOH), and non-Newtonian fluids, xanthan gum solutions and human blood samples, have been characterized. The results demonstrate that the developed microfluidic viscometer provides a convenient and useful platform for practical viscosity characterization of fluidic samples for a wide variety of applications.

14.
J Phys Condens Matter ; 29(43): 435101, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28786815

RESUMO

We apply the lattice Boltzmann method and the bead-spring network model of deformable particles (DPs) to study shear-induced particle ordering and deformation and the corresponding rheological behavior for dense DP suspensions confined in a narrow gap under steady external shear. The particle configuration is characterized with small-angle scattering intensity, the real-space 2D local order parameter, and the particle shape factors including deformation, stretching and tilt angles. We investigate how particle ordering and deformation vary with the particle volume fraction ϕ (=0.45-0.65) and the external shear rate characterized with the capillary number Ca (=0.003-0.191). The degree of particle deformation increases mildly with ϕ but significantly with Ca. Under moderate shear rate (Ca = 0.105), the inter-particle structure evolves from string-like ordering to layered hexagonal close packing (HCP) as ϕ increases. A long wavelength particle slithering motion emerges for sufficiently large ϕ. For ϕ = 0.61, the structure maintains layered HCP for Ca = 0.031-0.143 but gradually becomes disordered for larger and smaller Ca. The correlation in particle zigzag movements depends sensitively on ϕ and particle ordering. Layer-by-layer analysis reveals how the non-slippery hard walls affect particle ordering and deformation. The shear-induced reconfiguration of DPs observed in the simulation agrees qualitatively with experimental results of sheared uniform emulsions. The apparent suspension viscosity increases with ϕ but exhibits much weaker dependence compared to hard-sphere suspensions, indicating that particle deformation and unjamming under shear can significantly reduce the viscous stress. Furthermore, the suspension shear-thins, corresponding to increased inter-DP ordering and particle deformation with Ca. This work provides useful insights into the microstructure-rheology relationship of concentrated deformable particle suspensions.

15.
J Chem Phys ; 147(6): 064901, 2017 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-28810800

RESUMO

We investigate the conformation and dynamics of a semi-flexible polymer near an attractive plane or a cylindrical post using Langevin dynamics. We characterize the transition from the desorbed to absorbed state and quantify how absorption depends on the attraction interaction, polymer molecular weight, polymer flexibility, intra-polymer interaction, and micro-confinement. We find that the critical point of adsorption for ideal flexible polymers only weakly depends on confinement. However, the critical point of adsorption increases significantly for self-avoiding flexible polymers and under confinement, deviating from scaling theory predictions. These findings provide insights into DNA surface adsorption in nanoslits and nanochannels.

16.
Sci Rep ; 7(1): 1340, 2017 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-28465594

RESUMO

Our study of DNA dynamics in weakly attractive nanofabricated post arrays revealed crowding enhances polymer transport, contrary to hindered transport in repulsive medium. The coupling of DNA diffusion and adsorption to the microposts results in more frequent cross-post hopping and increased long-term diffusivity with increased crowding density. We performed Langevin dynamics simulations and found maximum long-term diffusivity in post arrays with gap sizes comparable to the polymer radius of gyration. We found that macromolecular transport in weakly attractive post arrays is faster than in non-attractive dense medium. Furthermore, we employed hidden Markov analysis to determine the transition of macromolecular adsorption-desorption on posts and hopping between posts. The apparent free energy barriers are comparable to theoretical estimates determined from polymer conformational fluctuations.

17.
Soft Matter ; 12(38): 7969-7976, 2016 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-27714308

RESUMO

We investigate polymer diffusion in a quasi-two-dimensional environment decorated with attractive cylindrical posts using Langevin dynamics simulation. We find that the polymer diffusivity has non-monotonic dependence on the post array density. This diffusive behavior strongly depends on the adsorption-desorption transition and the critical adsorption strength εc. For ε < εc, the polymer undergoes normal diffusion and the diffusivity decreases as the post density increases due to the reduction of the void volume. For ε > εc, polymer dynamics is strongly mediated by post adsorption, and we observe a regime where the polymer diffusivity increases as the post density increases. The polymer diffusivity reaches a maximum, which can be attributed to cross-post translation enabled by large polymer conformation fluctuations. We find both cross-post transport and polymer conformation fluctuations strongly depend on the post absorption strength and the chain length.

18.
Proc Natl Acad Sci U S A ; 113(18): 4947-52, 2016 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-27091969

RESUMO

Multicellular aggregates of circulating tumor cells (CTC clusters) are potent initiators of distant organ metastasis. However, it is currently assumed that CTC clusters are too large to pass through narrow vessels to reach these organs. Here, we present evidence that challenges this assumption through the use of microfluidic devices designed to mimic human capillary constrictions and CTC clusters obtained from patient and cancer cell origins. Over 90% of clusters containing up to 20 cells successfully traversed 5- to 10-µm constrictions even in whole blood. Clusters rapidly and reversibly reorganized into single-file chain-like geometries that substantially reduced their hydrodynamic resistances. Xenotransplantation of human CTC clusters into zebrafish showed similar reorganization and transit through capillary-sized vessels in vivo. Preliminary experiments demonstrated that clusters could be disrupted during transit using drugs that affected cellular interaction energies. These findings suggest that CTC clusters may contribute a greater role to tumor dissemination than previously believed and may point to strategies for combating CTC cluster-initiated metastasis.


Assuntos
Capilares/patologia , Movimento Celular , Células Neoplásicas Circulantes , Humanos
19.
J Chem Phys ; 142(17): 174904, 2015 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-25956117

RESUMO

We investigated nanoparticle (NP)-induced coil-to-globule transition of a semi-flexible polymer in a confined suspension of ideal NP using Langevin dynamics. DNA molecules are often found to be highly compact, bound with oppositely charged proteins in a crowded environment within cells and viruses. Recent studies found that high concentration of electrostatically neutral NP also condenses DNA due to entropically induced depletion attraction between DNA segments. Langevin dynamics simulations with a semi-flexible chain under strong confinement were performed to investigate the competition between NP-induced monomer-monomer and monomer-wall attraction under different confinement heights and NP volume fractions. We found that whether NP induce polymer segments to adsorb to the walls and swell or to attract one another and compact strongly depends on the relative strength of the monomer-wall and the NP-wall interactions.


Assuntos
Nanopartículas/química , Polímeros/química , Simulação por Computador , DNA/química , Elasticidade , Entropia , Modelos Químicos , Conformação de Ácido Nucleico , Soluções , Eletricidade Estática , Suspensões
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...