Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Se Pu ; 41(10): 835-842, 2023 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-37875406

RESUMO

Capillary electrochromatography (CEC) has received increased attention from the academic community because it combines the excellent selectivity of high performance liquid chromatography (HPLC) and the high efficiency of capillary electrophoresis (CE). Selecting the most appropriate stationary phase material is crucial to achieve better separation effects in CEC. In recent years, a considerable number of materials, such as graphene oxide, proteins, metal organic frameworks, and covalent organic frameworks (COFs), have been widely used as stationary phases in CEC to further improve its separation performance and extend its scope of potential applications. Among these materials, COFs have shown great application prospects in CEC owing to their unique properties, which include high porosity, large surface area, excellent stability, tunable pore size, and high designability of the framework structure. This review systematically summarizes published papers on the development and application of COFs in CEC from 2016 to 2023. First, two COF-based capillary columns (i. e., open-tube CEC columns and monolithic CEC columns) and their preparation methods are introduced. Second, the applications of CEC based on COF stationary phases in the separation of environmental endocrine disruptors, pesticides, aromatic compounds, amino acids, and drugs, particularly chiral drugs, are systematically summarized. The separation mechanism of CEC based on COF stationary phases is also introduced. At present, the good separation ability of COF-based CEC is mainly attributed to two factors: 1) The size exclusion effect of the pores of the COF stationary phase. Because of differences in the sizes of their organic molecular building units and side chains, COFs have varying pore sizes and topological structures. Thus, target analytes smaller than the pores of the COFs can enter the frameworks and interact with them during separation. On the other hand, target analytes larger than the pores of the COFs cannot enter the frameworks and interact with them during separation; thus, they can be separated. 2) The interactions between the target analytes and side chains (e. g., hydrophobic interactions, hydrogen bonding, π-π interactions, etc.) of the COFs. Since COFs usually contain alkyl side chains, aromatic structures, and oxygen and/or nitrogen atoms with high electronegativity, various interactions could occur between the COFs and target analytes. Finally, directions for the future development and strategic application of CEC based on COF stationary phases are proposed. We believe that future research in CEC based on COF stationary phases should focus on the following aspects: 1) The use of cheminformatics to design and construct COFs to improve the efficiency of COF capillary column preparation; 2) the development of milder methods to synthesize COFs that can meet the requirements of high performance COF capillary columns; and 3) in-depth research to explore the separation mechanism of CEC based on COF stationary phases to provide theoretical guidance for developing CEC methods suitable for the separation and analysis of complex samples.

2.
Anal Chem ; 88(21): 10474-10481, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27689235

RESUMO

A sensitive and selective fluorescence "turn-off" sensor to detect heparin using water-soluble silicon nanoparticles (Si NPs) was developed for the first time. The Si NPs were synthesized by a simple one-step procedure, which did not need high-temperature and complex modification. The as-prepared Si NPs featured strong fluorescence, favorable biocompatibility, and robust photo- and pH stability. Significantly, the Si NPs were induced to assemble or aggregate via hydrogen bonding, which resulted in the fluorescence of Si NPs quenched. Under the optimized conditions, the linear range was obtained from 0.02 to 2.0 µg/mL, with a limit of detection of 18 ng/mL (equal to 0.004 U/mL). It was lower than the proper therapeutic level of heparin during cardiovascular surgery and long-term therapy. This proposed method was relatively free of interference from heparin analogues, which commonly existed in heparin samples and could possibly affect heparin detection. Moreover, it did not need to introduce any control medium. As expected, the method was successfully applied to detect heparin in human serum samples with satisfactory recovery ranging from 98.8 to 102.5%. The Si NPs were superbly suitable for cell imaging owing to the negligible cytotoxicity and excellent biocompatibility.


Assuntos
Anticoagulantes/sangue , Materiais Biocompatíveis/química , Técnicas Biossensoriais/métodos , Heparina/sangue , Nanopartículas/química , Imagem Óptica/métodos , Silício/química , Linhagem Celular , Humanos , Microscopia de Fluorescência/métodos , Modelos Moleculares , Nanopartículas/ultraestrutura
3.
J Chromatogr A ; 1217(34): 5529-35, 2010 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-20638068

RESUMO

Eight l-tartrates and a d-tartrate with different alcohol moieties were used as chiral oils to prepare chiral microemulsions, which were utilized in conjunction with borate buffer to separate the enantiomers of beta-blockers or structurally related compounds by the chiral microemulsion electrokinetic chromatography (MEEKC) method. Among them, six were found to have a relatively good chiral separation performance and their chiral recognition effect in terms of both enantioselectivity and resolution increases linearly with the number of carbon atoms in the alkyl group of alcohol moiety. The tartrates containing alkyl groups of different structures but the same number of carbon atoms, i.e. one of straight chain and one of branched chain, provide similar enantioseparations. The trend was elucidated according to the changes in the difference of the steric matching between the molecules of two enantiomers and chiral selector. Furthermore, it was demonstrated for the first time that a water insoluble solid compound, di-i-butyl l-tartrate (mp. 73.5 degrees C), can be used as an oil to prepare a stable microemulsion to be used in the chiral MEEKC successfully. And a critical effect of the microemulsion for chiral separation, which has never been reported before, was found in this experiment, namely providing a hydrophobic environment to strengthen the interactions between the chiral selector and enantiomers.


Assuntos
Ácidos Bóricos/química , Cromatografia Capilar Eletrocinética Micelar/métodos , Emulsões/química , Tartaratos/química , Interações Hidrofóbicas e Hidrofílicas , Modelos Lineares , Conformação Molecular , Propanolaminas/química , Propanolaminas/isolamento & purificação , Estereoisomerismo
4.
Electrophoresis ; 30(1): 83-91, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19156665

RESUMO

The technique of combined flow injection CE (FI-CE) integrates the essential favorable merits of FI and CE. It utilizes the various excellent on-line sample pretreatments and preconcentration (such as cloud point extraction, SPE, ion-exchange, dynamic pH junction and head-column field-amplified sample stacking technique) of FI, which has the advantages of high speed, accuracy, precision and avoiding manual handling of sample and reagents. Therefore, the coupling of FI-CE is an attractive technique; it can significantly expand the application of CE and has achieved many publications since its first appearance. The basic principles, instrumental developments and applications of FI-CE system from 2006 to 2008 are reviewed.


Assuntos
Eletroforese Capilar/instrumentação , Eletroforese Capilar/métodos , Eletroforese em Microchip , Miniaturização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...