Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Imaging ; 10(4)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38667982

RESUMO

Local feature description of point clouds is essential in 3D computer vision. However, many local feature descriptors for point clouds struggle with inadequate robustness, excessive dimensionality, and poor computational efficiency. To address these issues, we propose a novel descriptor based on Planar Projection Contours, characterized by convex packet contour information. We construct the Local Reference Frame (LRF) through covariance analysis of the query point and its neighboring points. Neighboring points are projected onto three orthogonal planes defined by the LRF. These projection points on the planes are fitted into convex hull contours and encoded as local features. These planar features are then concatenated to create the Planar Projection Contour (PPC) descriptor. We evaluated the performance of the PPC descriptor against classical descriptors using the B3R, UWAOR, and Kinect datasets. Experimental results demonstrate that the PPC descriptor achieves an accuracy exceeding 80% across all recall levels, even under high-noise and point density variation conditions, underscoring its effectiveness and robustness.

2.
Sensors (Basel) ; 24(3)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38339596

RESUMO

Composite materials are frequently exposed to external factors during their operational service, resulting in internal structural damage which subsequently impacts their structural performance. This paper employs ferromagnetic materials for their sensitivity to magnetic field strength. By detecting variations in the magnetic field within the embedded ferromagnetic microwires of composite materials, the aim is to indirectly assess the health status of the composite materials. Firstly, a theoretical numerical model for magnetic field intensity at the crack site was established. Subsequently, a finite element model was employed to analyze the variations in the magnetic characteristics of ferromagnetic microwires at the crack site. Under different parameter conditions, the patterns of magnetic signals at the crack site were determined. The results indicate that with an increase in the angle between the external magnetic field and the crack, the fitted curve of the magnetic signal shows a linear increase. The distance between the peak and valley of the radial magnetic signal in the axial direction decreases, and the axial magnetic signal transitions from double-peak to single-peak. With the increase in crack depth, the fitted curve of the magnetic signal shows a linear increase, and the magnetic signal at the crack tip also exhibits a linear increase. An increase in crack width leads to a non-linear decrease in the fitted curve of the magnetic signal, and after reaching a certain width, the magnetic signal stabilizes. For two identical cracks at different distances, the magnetic signal exhibits a transition from a complete pattern to two complete patterns. With the increase in the external magnetic field, the magnetic signal shows a completely regular linear increase. By analyzing and calculating the variations in magnetic signals, the patterns of magnetic characteristics under the damaged state of ferromagnetic microwires were obtained. This serves as a basis for assessing whether they can continue in service and for evaluating the overall health status of composite materials.

3.
Sci Prog ; 105(1): 368504221079184, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35317698

RESUMO

Thin-walled structures (TWS) were widely used in engineering equipment, and may be subjected to impact loads to produce different degrees of structural damage during application. However, it is a difficult problem to determine the impact load conditions for these structural damages. In this study, we developed a novel method of identifying the impact load condition of the thin-walled structure damage, which is based on particle swarm optimization-backpropagation (PSO-BP) neural network. First, the known impact position and velocity are applied to the finite element model (FEM) of the TWS to produce permanent plastic deformation, and to fit the characteristic shape of the deformation is needed by invoking the multivariate polynomial function. Then, the method is devoted to build a basic data set. With impact position and velocity as input and function coefficients as output, a model of extended PSO-BP neural network is established. Besides, the basic sample set is expanded to solve the lack of samples. Ultimately, utilizing the expanded total sample set as training data, function coefficients, impact position and velocity will be outputted. On the basis of the known functional coefficients of deformed surfaces, a model of predictive PSO-BP neural network is established and predicted. Furthermore, we predicted the collision position and velocity using a conventional BP neural network in the same way. Finally, the predicted impact position and velocity is compared with the analysis results of the FEM, which verifies that the PSO-BP neural network algorithm has high accuracy.


Assuntos
Algoritmos , Redes Neurais de Computação , Plásticos
4.
Sci Prog ; 104(1): 368504211003385, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33749415

RESUMO

Fixed beam structures are widely used in engineering, and a common problem is determining the load conditions of these structures resulting from impact loads. In this study, a method for accurately identifying the location and magnitude of the load causing plastic deformation of a fixed beam using a backpropagation artificial neural network (BP-ANN). First, a load of known location and magnitude is applied to the finite element model of a fixed beam to create plastic deformation, and a polynomial expression is used to fit the resulting deformed shape. A basic data set was established through this method for a series of calculations, and it consists of the location and magnitude of the applied load and polynomial coefficients. Then, a BP-ANN model for expanding the sample data is established and the sample set is expanded to solve the common problem of insufficient samples. Finally, using the extended sample set as training data, the coefficients of the polynomial function describing the plastic deformation of the fixed beam are used as input data, the position and magnitude of the load are used as output data, a BP-ANN prediction model is established. The prediction results are compared with the results of finite element analysis to verify the effectiveness of the method.


Assuntos
Redes Neurais de Computação , Plásticos , Algoritmos , Análise de Elementos Finitos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...