Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38954505

RESUMO

White Roman goose (Anser anser domesticus) feathers, comprised of oriented conical barbules, are coated with gland-secreted preening oils to maintain a long-term nonwetting performance for surface swimming. The geese are accustomed to combing their plumages with flat bills in case they are contaminated with oleophilic substances, during which the amphiphilic saliva spread over the barbules greatly impairs their surface hydrophobicities and allows the trapped contaminants to be anisotropically self-cleaned by water flows. Particularly, the superhydrophobic behaviors of the goose feathers are recovered as well. Bioinspired by the switchable anisotropic self-cleaning functionality of white Roman geese, superhydrophobic unidirectionally inclined conical structures are engineered through the integration of a scalable colloidal self-assembly technology and a colloidal lithographic approach. The dependence of directional sliding properties on the shape, inclination angle, and size of conical structures is systematically investigated in this research. Moreover, their switchable anisotropic self-cleaning functionalities are demonstrated by Sudan blue II/water (0.01%) separation performances. The white Roman goose feather-inspired coatings undoubtedly offer a new concept for developing innovative applications that require directional transportation and the collection of liquids.

2.
Nanomaterials (Basel) ; 12(11)2022 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-35683712

RESUMO

Most bio-inspired antireflective nanostructures are extremely vulnerable and suffer from complicated lithography-based fabrication procedures. To address the issues, we report a scalable and simple non-lithography-based approach to engineer robust antireflective structures, inspired by the longtail glasswing butterfly, in a single step. The resulting two-dimensional randomly arranged 80/130/180 nm silica colloids, partially embedded in a polymeric matrix, generate a gradual refractive index transition at the air/substrate interface to suppress light reflection. Importantly, the randomly arranged subwavelength silica colloids display even better antireflection performance for large incident angles than that of two-dimensional non-close-packed silica colloidal crystals. The biomimetic coating is of considerable technological importance in numerous practical applications.

3.
J Colloid Interface Sci ; 610: 246-257, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34923266

RESUMO

Randomly arranged irregular inclined conical structure-covered dragonfly wings, distinguished from periodic conical structure-covered cicada wings, are with high optical transparency for wide viewing angles. Bioinspired by the antireflective structures, we develop a colloidal lithography approach for engineering randomly arranged irregular conical structures with shape memory polymer-based tips. The structures establish a gradual refractive index transition to suppresses optical reflection in the visible spectrum. By manipulating the configuration of structure tips through applying common solvent stimulations or contact pressures under ambient conditions, the resulting unidirectional antireflection and omnidirectional antireflection performances are able to be instantaneously and reversibly switched. The dependences of structure shape, structure inclination, structure arrangement, and structure composition on the switchable antireflection capability are also systematically investigated in this study.


Assuntos
Odonatos , Animais , Asas de Animais
4.
Int J Antimicrob Agents ; 42(2): 141-8, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23742833

RESUMO

Acinetobacter baumannii has recently emerged as a major cause of healthcare-associated infections owing to an increase in its antimicrobial resistance to virtually all available drugs. The ability of endolysins (lysozymes) to digest cell walls when applied exogenously to bacterial cells has enabled their use as novel antibacterials. In order to utilise endolysins as a therapeutic alternative to antibiotics, we surveyed the genome sequence of A. baumannii ATCC 17978 and successfully identified two phage-related endolysin genes, A1S_1600 and A1S_2016 (termed lysAB3 and lysAB4, respectively). Following cloning and expression/purification, various antibacterial activities of these two phage-related endolysins were determined in vitro. Zymographic assays showed that only purified LysAB3 could lyse the peptidoglycan of the A. baumannii cell wall. When applied exogenously, both LysAB3 and LysAB4 were active against most Acinetobacter spp. tested but had virtually no activity against other non-Acinetobacter spp. Scanning electron microscopy revealed that exposure to 100µg/mL LysAB3 and LysAB4 for up to 60min caused a remarkable modification of the cell shape of A. baumannii. These results indicate that the genes encoding phage-related endolysins can be readily isolated from the bacterial genome and have potential for the development of novel antimicrobial agents.


Assuntos
Acinetobacter baumannii/genética , Acinetobacter baumannii/virologia , Bacteriófagos/enzimologia , Bacteriófagos/genética , Endopeptidases/genética , Endopeptidases/metabolismo , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/ultraestrutura , Antibacterianos/isolamento & purificação , Antibacterianos/metabolismo , Clonagem Molecular , Endopeptidases/isolamento & purificação , Expressão Gênica , Genoma Bacteriano , Humanos , Hidrólise , Microscopia Eletrônica de Varredura , Peptidoglicano/metabolismo , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...