Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antibiotics (Basel) ; 11(1)2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35052993

RESUMO

Background: Doxycycline possesses antibacterial activity against Clostridioides difficile and anti-inflammatory effects. Materials and Methods: The influence of doxycycline on the development of CDI was studied in an established animal model of CDI using C57BL/6 mice. Results: Mice intraperitoneally administered doxycycline had higher cecum weight (1.3 ± 0.1 vs. 0.5 ± 0.1 g; p < 0.001) and less body weight reduction (0.7 ± 0.5 g vs. -17.4 ± 0.2 g; p < 0.001) than untreated mice infected with C. difficile. Oral doxycycline, metronidazole, or vancomycin therapy resulted in less body weight reduction in mice with CDI than in untreated mice (1.1 ± 0.1 g, 1.3 ± 0.2 g, 1.2 ± 0.1 g, vs. 2.9 ± 0.3 g; p < 0.001). Doxycycline therapy led to lower expression levels of inflammatory cytokines, such as macrophage inflammatory protein-2 (0.4 ± 0.1 vs. 2.9 ± 1.3, p = 0.02), and higher levels of zonula occludens-1 (1.2 ± 0.1 vs. 0.8 ± 0.1, p = 0.02) in colonic tissues than in untreated mice. Conclusions: Concurrent intraperitoneal administration of doxycycline and oral C. difficile challenge does not aggravate the disease severity of CDI, and oral doxycycline may be a potential therapeutic option for CDI.

3.
Front Immunol ; 12: 691039, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34322122

RESUMO

Background: Clostridioides difficile is the leading cause of nosocomial infectious diarrhea. Toll-like receptors (TLRs) are the major components of innate immunity that sense pathogens. The relationship between TLRs and C. difficile infection (CDI) was analyzed in clinical patients and a mouse model. Materials and Methods: A prospective investigation was conducted in medical wards of Tainan Hospital, Ministry of Health and Welfare, Tainan, Taiwan, from January 2011 to January 2013. Adult patients were followed up for the development of CDI. Single nucleotide polymorphisms (SNPs) of TLR2 and TLR4 were analyzed to assess the relationship between genetic polymorphisms and the development of CDI. A mouse model of CDI was used to investigate the pathogenic role of TLRs in CDI, TLR2 and TLR4 knockout (Tlr2-/- and Tlr4-/-) mice. Results: In the prospective study, 556 patients were enrolled, and 6.5% (36) of patients, accounting for 3.59 episodes per 1000 patient-days, developed CDI. Of 539 patients with available blood samples, the TLR2 rs3804099 polymorphism was more often noted in those with CDI than in those without CDI (64.5% vs. 46.1%; P = 0.046) but was not significant in multivariate analysis. Because the TLR2 rs3804099 polymorphism was moderately associated with CDI, the role of TLR2 and TLR4 was further evaluated in a mouse model. Both Tlr2-/- and Tlr4-/- mice showed more severe CDI disease than wild-type mice in terms of body weight change and fecal content five days after oral challenge with C. difficile. Furthermore, Tlr2-/- mice suffered from more severe disease than Tlr4-/- mice, as evidenced by stool consistency, cecum weight, and survival rate. Conclusion: The TLR2 rs3804099 polymorphism is marginally associated with the development of CDI, and the pathogenic role of TLR2 is further supported by a mouse model.


Assuntos
Infecções por Clostridium/imunologia , Receptor 2 Toll-Like/imunologia , Animais , Povo Asiático/genética , Clostridioides difficile , Infecções por Clostridium/genética , Infecções por Clostridium/patologia , Colo/imunologia , Colo/patologia , Modelos Animais de Doenças , Feminino , Genótipo , Humanos , Masculino , Camundongos Knockout , Polimorfismo de Nucleotídeo Único , Receptor 2 Toll-Like/genética , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/imunologia
4.
Helicobacter ; 26(2): e12787, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33586844

RESUMO

BACKGROUND: Flagella-mediated motility is both a crucial virulence determinant of Helicobacter pylori and a factor associated with gastrointestinal diseases. Flagellar formation requires flagellins to be glycosylated with pseudaminic acid (Pse), a process that has been extensively studied. However, the transfer of Pse to flagellins remains poorly understood. Therefore, the aim of this study is to characterize a putative glycosyltransferase jhp0106 in flagellar formation. MATERIALS AND METHODS: Western blotting and chemical deglycosylation were performed to examine FlaA glycosylation. Protein structural analyses were executed to identify the active site residues of Jhp0106, while the Jhp0106-FlaA interaction was examined using a bacterial two-hybrid assay. Lastly, site-directed mutants with mutated active site residues in the jhp0106 gene were generated and investigated using a motility assay, Western blotting, cDNA-qPCR analysis, and electron microscopic examination. RESULTS: Loss of flagellar formation in the Δjhp0106 mutant was confirmed to be associated with non-glycosylated FlaA. Furthermore, three active site residues of Jhp0106 (S350, F376, and E415) were identified within a potential substrate-binding region. The interaction between FlaA and Jhp0106, Jhp0106::S350A, Jhp0106::F376A, or Jhp0106::E415A was determined to be significant. As well, the substitution of S350A, F376A, or E415A in the site-directed Δjhp0106 mutants resulted in impaired motility, deficient FlaA glycosylation, and lacking flagella. However, these phenotypic changes were regardless of flaA expression, implying an indefinite proteolytic degradation of FlaA occurred. CONCLUSIONS: This study demonstrated that Jhp0106 (PseE) binds to FlaA mediating FlaA glycosylation and flagellar formation. Our discovery of PseE has revealed a new glycosyltransferase family responsible for flagellin glycosylation in pathogens.


Assuntos
Glicosiltransferases , Infecções por Helicobacter , Helicobacter pylori , Sequência de Aminoácidos , Flagelos , Flagelina , Humanos
5.
Fungal Genet Biol ; 76: 47-56, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25683380

RESUMO

Aminoacyl-tRNA synthetases are housekeeping enzymes essential for protein synthesis. We herein present evidence that the yeast Vanderwaltozyma polyspora possesses two paralogous glycyl-tRNA synthetase (GlyRS) genes-GRS1 and GRS2. Paradoxically, GRS1 provided functions in both the cytoplasm and mitochondria, while GRS2 was essentially silent under normal growth conditions. Expression of GRS2 could be activated by stresses such as high pH or ethanol and most effectively by high temperature. The expressed GlyRS2 protein was exclusively found in the cytoplasm and more stable under heat-shock conditions (37°C) than under normal growth conditions (30°C) in vivo. In addition, GRS2 effectively rescued the cytoplasmic defect of a Saccharomyces cerevisiae GRS1 knockout strain when expressed from a constitutive promoter. Moreover, the purified GlyRS2 enzyme was fairly active at both 30°C and 37°C in glycylation of yeast tRNA in vitro. However, unexpectedly, the purified GlyRS2 enzyme was practically inactive at temperature above 40°C in vitro. Our study suggests that GRS2 is an inducible gene that acts under stress conditions where GlyRS1 may be insufficient, unavailable, or rendered inactive.


Assuntos
Ascomicetos/enzimologia , Ascomicetos/genética , Glicina-tRNA Ligase/genética , Glicina-tRNA Ligase/metabolismo , Sequência de Aminoácidos , Ascomicetos/classificação , Ascomicetos/fisiologia , Sequência de Bases , Glicina-tRNA Ligase/química , Resposta ao Choque Térmico , Dados de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...