Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Aging Cell ; : e14244, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874013

RESUMO

Moderate physical training has been shown to hinder age-related memory decline. While the benefits of physical training on hippocampal memory function are well-documented, little is known about its impact on working memory, which is linked to the prelimbic cortex (PrL), one major subdivision of the prefrontal cortex. Here, we examined the effects of physical training on spatial working memory in a well-established animal model of physical training, starting at 16 months of age and continuing for 5 months (running wheel 1 h/day and 5 days/week). This training strategy improved spatial working memory in aged mice (22-month-old), which was accompanied by an increased spine density and a lower TAF15 expression in the PrL. Specifically, physical training affected both thin and mushroom-type spines on PrL pyramidal cells, and prevented age-related loss of spines on selective segments of apical dendritic branches. Correlation analysis revealed that increased TAF15-expression was detrimental to the dendritic spines. However, physical training downregulated TAF15 expression in the PrL, preserving the dendritic spines on PrL pyramidal cells and improving working memory in trained aged mice. When TAF15 was overexpressed in the PrL via a viral approach, the benefits of physical training on the dendritic spines and working memory were abolished. These data suggest that physical training at a moderate pace might downregulate TAF15 expression in the PrL, which favors the dendritic spines on PrL pyramidal cells, thereby improving spatial working memory.

2.
eNeuro ; 11(5)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38641413

RESUMO

The mechanisms by which brain insults lead to subsequent epilepsy remain unclear. Insults including trauma, stroke, infections, and long seizures (status epilepticus, SE) increase the nuclear expression and chromatin binding of the neuron-restrictive silencing factor/RE-1 silencing transcription factor (NRSF/REST). REST/NRSF orchestrates major disruption of the expression of key neuronal genes, including ion channels and neurotransmitter receptors, potentially contributing to epileptogenesis. Accordingly, transient interference with REST/NRSF chromatin binding after an epilepsy-provoking SE suppressed spontaneous seizures for the 12 d duration of a prior study. However, whether the onset of epileptogenesis was suppressed or only delayed has remained unresolved. The current experiments determined if transient interference with REST/NRSF chromatin binding prevented epileptogenesis enduringly or, alternatively, slowed epilepsy onset. Epileptogenesis was elicited in adult male rats via systemic kainic acid-induced SE (KA-SE). We then determined if decoy, NRSF-binding-motif oligodeoxynucleotides (NRSE-ODNs), given twice following KA-SE (1) prevented REST/NRSF binding to chromatin, using chromatin immunoprecipitation, or (2) prevented the onset of spontaneous seizures, measured with chronic digital video-electroencephalogram. Blocking NRSF function transiently after KA-SE significantly lengthened the latent period to a first spontaneous seizure. Whereas this intervention did not influence the duration and severity of spontaneous seizures, total seizure number and seizure burden were lower in the NRSE-ODN compared with scrambled-ODN cohorts. Transient interference with REST/NRSF function after KA-SE delays and moderately attenuates insult-related hippocampal epilepsy, but does not abolish it. Thus, the anticonvulsant and antiepileptogenic actions of NRSF are but one of the multifactorial mechanisms generating epilepsy in the adult brain.


Assuntos
Cromatina , Ácido Caínico , Ratos Sprague-Dawley , Animais , Masculino , Cromatina/metabolismo , Ácido Caínico/farmacologia , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Estado Epiléptico/metabolismo , Modelos Animais de Doenças , Hipocampo/metabolismo , Ratos , Epilepsia/metabolismo
3.
Sci Transl Med ; 15(725): eadh7668, 2023 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-38055802

RESUMO

Targeting angiotensin-converting enzyme 2 (ACE2) represents a promising and effective approach to combat not only the COVID-19 pandemic but also potential future pandemics arising from coronaviruses that depend on ACE2 for infection. Here, we report ubiquitin specific peptidase 2 (USP2) as a host-directed antiviral target; we further describe the development of MS102, an orally available USP2 inhibitor with viable antiviral activity against ACE2-dependent coronaviruses. Mechanistically, USP2 serves as a physiological deubiquitinase of ACE2, and targeted inhibition with specific small-molecule inhibitor ML364 leads to a marked and reversible reduction in ACE2 protein abundance, thereby blocking various ACE2-dependent coronaviruses tested. Using human ACE2 transgenic mouse models, we further demonstrate that ML364 efficiently controls disease caused by infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), as evidenced by reduced viral loads and ameliorated lung inflammation. Furthermore, we improved the in vivo performance of ML364 in terms of both pharmacokinetics and antiviral activity. The resulting lead compound, MS102, holds promise as an oral therapeutic option for treating infections with coronaviruses that are reliant on ACE2.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Humanos , Camundongos , Enzima de Conversão de Angiotensina 2 , Antivirais/farmacologia , Antivirais/uso terapêutico , Camundongos Transgênicos , Pandemias , Peptidil Dipeptidase A/metabolismo , Ubiquitina Tiolesterase
4.
Biol Psychiatry Glob Open Sci ; 3(4): 746-755, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37881549

RESUMO

Background: Early-life adversity (ELA) is associated with increased risk for mood disorders, including depression and substance use disorders. These disorders are characterized by impaired reward-related behaviors, suggesting compromised operations of reward-related brain circuits. However, the brain regions engaged by ELA that mediate these enduring consequences of ELA remain largely unknown. In an animal model of ELA, we identified aberrant reward-seeking behaviors, a discovery that provides a framework for assessing the underlying circuits. Methods: Employing TRAP2 (targeted recombination in active populations) male and female mice, in which neurons activated within a defined time frame are permanently tagged, we compared ELA- and control-reared mice, assessing the quantity and distribution of ELA-related neuronal activation. After validating the TRAP2 results using native c-Fos labeling, we defined the molecular identity of this population of activated neurons. Results: We uniquely demonstrated that the TRAP2 system is feasible and efficacious in neonatal mice. Surprisingly, the paraventricular nucleus of the thalamus was robustly and almost exclusively activated by ELA and was the only region distinguishing ELA from typical rearing. Remarkably, a large proportion of ELA-activated paraventricular nucleus of the thalamus neurons expressed CRF1, the receptor for the stress-related peptide, corticotropin-releasing hormone, but these neurons did not express corticotropin-releasing hormone itself. Conclusions: The paraventricular nucleus of the thalamus, an important component of reward circuits that is known to encode remote, emotionally salient experiences to influence future motivated behaviors, encodes adverse experiences as remote as those occurring during the early postnatal period and is thus poised to contribute to the enduring deficits in reward-related behaviors consequent to ELA.

5.
ACS Appl Mater Interfaces ; 15(36): 42811-42822, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37655468

RESUMO

Binder-free electrodes offer a great opportunity for developing high-performance sodium-ion batteries (SIBs) aiming at the application in energy storage devices. Tin selenide (SnSe) is considered to be a promising anode material for SIBs owing to its high theoretical capacity (780 mA h g-1). In this work, a SnSe nanosheet array (SnSe NS) on a carbon cloth is prepared using a vacuum thermal evaporation method. The as-prepared SnSe NS electrode does not have metal current collectors, binders, or any conductive additives. In comparison with the electrode of SnSe blocky particles (SnSe BP), the SnSe NS electrode delivers a higher initial charge capacity of 713 mA h g-1 at a current density of 0.1C and maintains a higher charge capacity of 410 mA h g-1 after 50 cycles. Furthermore, the electrochemical behaviors of the SnSe NS electrode are determined via pseudocapacitance and electrochemical impedance spectroscopy measurements, indicating a faster kinetic process of the SnSe NS electrode compared to that of the SnSe BP. Operando X-ray diffraction measurements prove that the SnSe NS exhibits better phase reversibility than the SnSe BP. After the cycles, the SnSe NS electrode still maintains its particular structure. This work provides a feasible method to prepare SnSe nanostructures with high capacity and improved sodium ion diffusion ability.

6.
Mol Psychiatry ; 28(8): 3444-3458, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37500828

RESUMO

Adverse experiences in early life can shape neuronal structures and synaptic function in multiple brain regions, leading to deficits of distinct cognitive functions later in life. Focusing on the pyramidal cells of the prelimbic cortex (PrL), a main subregion of the medial prefrontal cortex, the impact of early-life adversity (ELA) was investigated in a well-established animal model generated by changing the rearing environment during postnatal days 2 to 9 (P2-P9), a sensitive developmental period. ELA has enduring detrimental impacts on the dendritic spines of PrL pyramidal cells, which is most apparent in a spatially circumscribed region. Specifically, ELA affects both thin and mushroom-type spines, and ELA-provoked loss of spines is observed on selective dendritic segments of PrL pyramidal cells in layers II-III and V-VI. Reduced postsynaptic puncta represented by postsynaptic density protein-95 (PSD-95), but not synaptophysin-labelled presynaptic puncta, in ELA mice supports the selective loss of spines in the PrL. Correlation analysis indicates that loss of spines and postsynaptic puncta in the PrL contributes to the poor spatial working memory of ELA mice, and thin spines may play a major role in working memory performance. To further understand whether loss of spines affects glutamatergic transmission, AMPA- and NMDA-receptor-mediated synaptic currents (EPSCs) were recorded in a group of Thy1-expressing PrL pyramidal cells. ELA mice exhibited a depressed glutamatergic transmission, which is accompanied with a decreased expression of GluR1 and NR1 subunits in the PrL. Finally, upregulating the activation of Thy1-expressing PrL pyramidal cells via excitatory DREADDs can efficiently improve the working memory performance of ELA mice in a T-maze-based task, indicating the potential of a chemogenetic approach in restoring ELA-provoked memory deficits.


Assuntos
Memória de Curto Prazo , Animais , Camundongos , Espinhas Dendríticas/fisiologia , Transtornos da Memória/metabolismo , Memória de Curto Prazo/fisiologia , Neurônios , Córtex Pré-Frontal/metabolismo , Células Piramidais/metabolismo , Estresse Psicológico
7.
Exp Gerontol ; 179: 112243, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37336370

RESUMO

The differentiation of human induced pluripotent stem cells (hiPSCs) into functional dopaminergic neural precursors is the basis of cell therapy for Parkinson's disease (PD). However, the use of small molecule inhibitors/activators in the differentiation of hiPSCs in vitro leads to cell death and low differentiation efficiency. Moreover, the mechanism of differentiation remains unclear. MiR-210-5p was increased during hiPSCs differentiation. Whether it promotes hiPSCs differentiation and transplantation needs further study. Here, we overexpressed miR-210-5p in hiPSCs to study its roles and mechanisms. We found that miR-210-5p promoted the differentiation of hiPSCs into dopaminergic neural precursors and reduced the expression of SMAD4 and SUFU meanwhile. Luciferase assays showed that miR-210-5p binded to SMAD4 and SUFU, which are key molecules in the key signals (TGF-ß and SHH) of hiPSCs differentiation. Furthermore, in the effect evaluation of cell transplantation into parkinsonian rats, the degree of behavioral recovery and the growth of transplanted cells in the group overexpressed miR-210-5p were similar to those in the positive group with all small molecule inhibitors/activators. Therefore, we conclude that miR-210-5p promotes the differentiation of hiPSCs into dopaminergic neural precursors by targeting SMAD4 and SUFU. In the therapeutic evaluation of cell transplantation, miR-210-5p can replace the use of corresponding small molecule inhibitors/activators to reduce cell death. This study provides an experimental basis and a new target for the miRNA-modified differentiation of hiPSCs and cell transplantation in clinical treatment of PD in the future.


Assuntos
Células-Tronco Pluripotentes Induzidas , MicroRNAs , Humanos , Ratos , Animais , Células-Tronco Pluripotentes Induzidas/metabolismo , Diferenciação Celular , MicroRNAs/genética , MicroRNAs/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Proteína Smad4/genética , Proteína Smad4/metabolismo , Proteínas Repressoras/metabolismo
8.
Hippocampus ; 33(8): 970-992, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37096324

RESUMO

How the development and function of neural circuits governing learning and memory are affected by insults in early life remains poorly understood. The goal of this study was to identify putative changes in cortico-hippocampal signaling mechanisms that could lead to learning and memory deficits in a clinically relevant developmental pathophysiological rodent model, Febrile status epilepticus (FSE). FSE in both pediatric cases and the experimental animal model, is associated with enduring physiological alterations of the hippocampal circuit and cognitive impairment. Here, we deconstruct hippocampal circuit throughput by inducing slow theta oscillations in rats under urethane anesthesia and isolating the dendritic compartments of CA1 and dentate gyrus subfields, their reception of medial and lateral entorhinal cortex inputs, and the efficacy of signal propagation to each somatic cell layer. We identify FSE-induced theta-gamma decoupling at cortical synaptic input pathways and altered signal phase coherence along the CA1 and dentate gyrus somatodendritic axes. Moreover, increased DG synaptic activity levels are predictive of poor cognitive outcomes. We propose that these alterations in cortico-hippocampal coordination interfere with the ability of hippocampal dendrites to receive, decode and propagate neocortical inputs. If this frequency-specific syntax is necessary for cortico-hippocampal coordination and spatial learning and memory, its loss could be a mechanism for FSE cognitive comorbidities.


Assuntos
Convulsões Febris , Estado Epiléptico , Ratos , Animais , Convulsões Febris/induzido quimicamente , Convulsões Febris/complicações , Convulsões Febris/metabolismo , Aprendizagem Espacial , Hipocampo/fisiologia , Córtex Entorrinal/fisiologia , Estado Epiléptico/induzido quimicamente , Giro Denteado/fisiologia
9.
Nat Commun ; 14(1): 1088, 2023 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-36841826

RESUMO

Disrupted operations of the reward circuit underlie major emotional disorders, including depression, which commonly arise following early life stress / adversity (ELA). However, how ELA enduringly impacts reward circuit functions remains unclear. We characterize a stress-sensitive projection connecting basolateral amygdala (BLA) and nucleus accumbens (NAc) that co-expresses GABA and the stress-reactive neuropeptide corticotropin-releasing hormone (CRH). We identify a crucial role for this projection in executing disrupted reward behaviors provoked by ELA: chemogenetic and optogenetic stimulation of the projection in control male mice suppresses several reward behaviors, recapitulating deficits resulting from ELA and demonstrating the pathway's contributions to normal reward behaviors. In adult ELA mice, inhibiting-but not stimulating-the projection, restores typical reward behaviors yet has little effect in controls, indicating ELA-induced maladaptive plasticity of this reward-circuit component. Thus, we discover a stress-sensitive, reward inhibiting BLA → NAc projection with unique molecular features, which may provide intervention targets for disabling mental illnesses.


Assuntos
Complexo Nuclear Basolateral da Amígdala , Hormônio Liberador da Corticotropina , Camundongos , Masculino , Animais , Hormônio Liberador da Corticotropina/metabolismo , Recompensa , Núcleo Accumbens/metabolismo , Complexo Nuclear Basolateral da Amígdala/metabolismo , Ácido gama-Aminobutírico/farmacologia
10.
Biol Psychiatry Glob Open Sci ; 3(1): 99-109, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36712559

RESUMO

Background: Mental health and vulnerabilities to neuropsychiatric disorders involve the interplay of genes and environment, particularly during sensitive developmental periods. Early-life adversity (ELA) and stress promote vulnerabilities to stress-related affective disorders, yet it is unknown how transient ELA dictates lifelong neuroendocrine and behavioral reactions to stress. The population of hypothalamic corticotropin-releasing factor (CRF)-expressing neurons that regulate stress responses is a promising candidate to mediate the long-lasting influences of ELA on stress-related behavioral and hormonal responses via enduring transcriptional and epigenetic mechanisms. Methods: Capitalizing on a well-characterized model of ELA, we examined ELA-induced changes in gene expression profiles of CRF-expressing neurons in the hypothalamic paraventricular nucleus of developing male mice. We used single-cell RNA sequencing on isolated CRF-expressing neurons. We determined the enduring functional consequences of transcriptional changes on stress reactivity in adult ELA mice, including hormonal responses to acute stress, adrenal weights as a measure of chronic stress, and behaviors in the looming shadow threat task. Results: Single-cell transcriptomics identified distinct and novel CRF-expressing neuronal populations, characterized by both their gene expression repertoire and their neurotransmitter profiles. ELA-provoked expression changes were selective to specific subpopulations and affected genes involved in neuronal differentiation, synapse formation, energy metabolism, and cellular responses to stress and injury. Importantly, these expression changes were impactful, apparent from adrenal hypertrophy and augmented behavioral responses to stress in adulthood. Conclusions: We uncover a novel repertoire of stress-regulating CRF cell types differentially affected by ELA and resulting in augmented stress vulnerability, with relevance to the origins of stress-related affective disorders.

11.
J Environ Manage ; 325(Pt A): 116571, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36308787

RESUMO

Elucidating the responses and potential functions of soil microbial communities during succession is important for understanding biogeochemical processes and the sustainable development of plant communities after environmental disturbances. However, studies of such dynamics during post-mining ecological restoration in alpine areas remain poorly understood. Microbial diversity, nitrogen, and phosphorus cycle functional gene potential in the Heishan mining area of Northwest China was studied, including primitive succession, secondary succession, and artificial succession disturbed by mining. The results revealed that: (1) The dominant bacteria in both categories (non-remediated and ecologically restored) of mining area rhizosphere soil were Proteobacteria, adopting the r strategy, whereas in naturally occurring soil outside the mining area, the dominant bacteria were actinomycetes and Acidobacteria, adopting the k strategy. Notably, mining perturbation significantly reduced the relative abundance of archaea. (2) After restoration, more bacterial network node connections were observed in mining areas than were originally present, whereas the archaeal network showed the opposite trend. (3) The networks of microbial genes related to nitrogen and phosphorus cycle potential differed significantly, depending on the succession type. Namely, prior to restoration, there were more phosphorus related functional gene network connections; these were also more strongly correlated, and the network was more aggregated. (4) Soil factors such as pH and NO3-N affected both the mining area remediation soil and the soil outside the mining area, but did not affect the soil of the original vegetation in the mining area. The changes in the structure and function of plant rhizosphere microorganisms after mining disturbance can provide a theoretical basis for the natural restoration of mining areas.


Assuntos
Minas de Carvão , Microbiota , Rizosfera , Solo , Archaea/genética , Fósforo , Nitrogênio , Microbiologia do Solo , Mineração
12.
Aging Dis ; 13(4): 1293-1310, 2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35855335

RESUMO

Memory loss is the key symptom of Alzheimer's disease (AD). As successful drug treatments have not yet been identified, non-pharmaceutical interventions such as physical exercise and training have been employed to improve the memory function of people with dementia. We investigated the effect of prolonged physical running on hippocampal-dependent spatial memory and its underlying mechanisms using a well-established rodent model of AD. 3xTg-AD transgenic mice and non-transgenic mice were subjected to voluntary wheel running for 5 months (1 hour per day, 5 days per week), followed by spatial memory testing. After the behavioral testing, dendritic spines, synapses, and synaptic proteins as well as amyloid-beta (Aß) pathology were analyzed in the dorsal hippocampi. Running improved hippocampal-dependent spatial memory in 3xTg-AD mice. This running strategy prevented both thin and mushroom-type spines on CA1 pyramidal cells in 3xTg-AD mice, whereas the effects of running in non-transgenic mice were limited to thin spines. The enormous effects of running on spines were accompanied by an increased number of synapses and upregulated expression of synaptic proteins. Notably, running downregulated the processing of amyloid precursor protein, decreasing intracellular APP expression and extracellular Aß accumulation, and spatial memory performance correlated with levels of Aß peptides Aß1-40 and Aß1-42. These data suggest that prolonged running may improve memory in preclinical AD via slowing down the amyloid pathology and preventing the loss of synaptic contacts.

13.
Neuroscience ; 490: 11-24, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35248584

RESUMO

The impacts of early-life adversity (ELA) on cognitive functions including striatal-dependent habit memory and hippocampal-dependent spatial memory were investigated in male mice. The ELA mouse model was generated via an altered cage environment with limited nesting and bedding materials during postnatal days 2-9 (P2-9). The altered cage environment affected the nesting behaviors of dams, creating a stressful condition for their offspring. The ELA mice had biased decision making and poor spatial memory when they grew into young adults (4-month-old). To explore the underlying synaptic basis of these effects, excitatory synapses represented by postsynaptic density protein-95 (PSD-95) were immunolabelled on a series of brain sections and stereologically quantified in the dorsomedial striatum (DMS) and dorsolateral striatum (DLS), as well as in area CA1 of the dorsal hippocampus. Increased PSD-95-immunoreactive synapses were observed in DLS but not DMS, whereas selective loss of PSD-95 synapses was detected in the stratum radiatum of area CA1. The spine data supported the selective effects of ELA on PSD-95 synapses. Specifically, both thin and mushroom-type spines were increased in DLS, while loss of thin spines was apparent in CA1 radiatum in ELA mice versus controls. The correlation between PSD-95 synapses and memory performances was further analyzed, and the data suggested that increased small (<0.20 µm3) and large (>0.40 µm3) synapses in DLS might drive ELA mice to make decisions largely relying on habit memory, while loss of small synapses in hippocampal CA1 damage the spatial memory of ELA mice.


Assuntos
Região CA1 Hipocampal , Espinhas Dendríticas , Memória , Estresse Psicológico , Envelhecimento/psicologia , Animais , Região CA1 Hipocampal/fisiopatologia , Proteína 4 Homóloga a Disks-Large , Masculino , Camundongos , Sinapses
14.
Brain Struct Funct ; 226(2): 397-414, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33386419

RESUMO

The effects of early-life adversity (ELA) on dendritic differentiation of striatal neurons were investigated in the dorsal striatum including the dorsomedial striatum and dorsolateral striatum (DMS and DLS, respectively). An animal model of ELA was created by changing the growth environment of newborn mouse pups by giving limited bedding and nesting materials from postnatal day 2 to day 9 (P2-P9). One week after the stress paradigm (P16), the dendritic branches and spines of striatal spiny neurons as well as the synapses represented by postsynaptic density protein-95 (PSD-95) in DMS and DLS were stereologically analyzed. Adverse experience in early life selectively affected the spiny neurons in DLS, leading to abundant proximal dendritic branches and an increased number of filopodia-like protrusions, but a reduced number of dendritic spines. The selective effects of stress on neurons in DLS were further identified by reduced expression of PSD-95, including a reduced optical density of PSD-95 immunoreactivity and fewer individual PSD-95 immunoreactive synapses in this region. Notably, stress in early life affected either D1 or D2 dopamine receptor-expressing DLS neurons. These findings suggest that adverse early-life experience delayed the maturation of dendritic spines on neurons in the dorsolateral striatum. Altered dendritic differentiation provoked by stress in early life may contribute critically to the formation of proper neuronal circuits in the dorsal striatum and, therefore, affect striatum-dependent habitual behavior and emotional function later in life.


Assuntos
Corpo Estriado/metabolismo , Dendritos/metabolismo , Neurônios/metabolismo , Estresse Psicológico/metabolismo , Animais , Espinhas Dendríticas/metabolismo , Masculino , Camundongos , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo , Sinapses/metabolismo
15.
J Neurosci ; 41(4): 648-662, 2021 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-33262247

RESUMO

Stress may promote emotional and cognitive disturbances, which differ by sex. Adverse outcomes, including memory disturbances, are typically observed following chronic stress, but are now being recognized also after short events, including mass shootings, assault, or natural disasters, events that consist of concurrent multiple acute stresses (MAS). Prior work has established profound and enduring effects of MAS on memory in males. Here we examined the effects of MAS on female mice and probed the role of hormonal fluctuations during the estrous cycle on MAS-induced memory problems and the underlying brain network and cellular mechanisms. Female mice were impacted by MAS in an estrous cycle-dependent manner: MAS impaired hippocampus-dependent spatial memory in early-proestrous mice, characterized by high levels of estradiol, whereas memory of mice stressed during estrus (low estradiol) was spared. As spatial memory requires an intact dorsal hippocampal CA1, we examined synaptic integrity in mice stressed at different cycle phases and found a congruence of dendritic spine density and spatial memory deficits, with reduced spine density only in mice stressed during high estradiol cycle phases. Assessing MAS-induced activation of brain networks interconnected with hippocampus, we identified differential estrous cycle-dependent activation of memory- and stress-related regions, including the amygdala. Network analyses of the cross-correlation of fos expression among these regions uncovered functional connectivity that differentiated impaired mice from those not impaired by MAS. In conclusion, the estrous cycle modulates the impact of MAS on spatial memory, and fluctuating physiological levels of sex hormones may contribute to this effect.SIGNIFICANCE STATEMENT: Effects of stress on brain functions, including memory, are profound and sex-dependent. Acute stressors occurring simultaneously result in spatial memory impairments in males, but effects on females are unknown. Here we identified estrous cycle-dependent effects of such stresses on memory in females. Surprisingly, females with higher physiological estradiol experienced stress-induced memory impairment and a loss of underlying synapses. Memory- and stress-responsive brain regions interconnected with hippocampus were differentially activated across high and low estradiol mice, and predicted memory impairment. Thus, at functional, network, and cellular levels, physiological estradiol influences the effects of stress on memory in females, providing insight into mechanisms of prominent sex differences in stress-related memory disorders, such as post-traumatic stress disorder.


Assuntos
Estrogênios , Transtornos da Memória/fisiopatologia , Transtornos da Memória/psicologia , Estresse Psicológico/fisiopatologia , Estresse Psicológico/psicologia , Animais , Encéfalo/fisiopatologia , Região CA1 Hipocampal/fisiopatologia , Espinhas Dendríticas , Ciclo Estral , Estro , Feminino , Masculino , Aprendizagem em Labirinto , Camundongos , Camundongos Endogâmicos C57BL , Rede Nervosa/fisiopatologia , Proteínas Proto-Oncogênicas c-fos/genética , Memória Espacial , Útero/inervação , Útero/fisiopatologia
16.
Cell Rep ; 33(11): 108511, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33326786

RESUMO

Early-life adversity (ELA) is associated with lifelong memory deficits, yet the responsible mechanisms remain unclear. We impose ELA by rearing rat pups in simulated poverty, assess hippocampal memory, and probe changes in gene expression, their transcriptional regulation, and the consequent changes in hippocampal neuronal structure. ELA rats have poor hippocampal memory and stunted hippocampal pyramidal neurons associated with ~140 differentially expressed genes. Upstream regulators of the altered genes include glucocorticoid receptor and, unexpectedly, the transcription factor neuron-restrictive silencer factor (NRSF/REST). NRSF contributes critically to the memory deficits because blocking its function transiently following ELA rescues spatial memory and restores the dendritic arborization of hippocampal pyramidal neurons in ELA rats. Blocking NRSF function in vitro augments dendritic complexity of developing hippocampal neurons, suggesting that NRSF represses genes involved in neuronal maturation. These findings establish important, surprising contributions of NRSF to ELA-induced transcriptional programming that disrupts hippocampal maturation and memory function.


Assuntos
Hipocampo/imunologia , Transtornos da Memória/imunologia , Neurônios/metabolismo , Fatores de Transcrição/imunologia , Animais , Modelos Animais de Doenças , Humanos , Ratos
17.
Biol Psychiatry ; 87(10): 875-884, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32081365

RESUMO

Disrupted operation of the reward circuitry underlies many aspects of affective disorders. Such disruption may manifest as aberrant behavior including risk taking, depression, anhedonia, and addiction. Early-life adversity is a common antecedent of adolescent and adult affective disorders involving the reward circuitry. However, whether early-life adversity influences the maturation and operations of the reward circuitry, and the potential underlying mechanisms, remain unclear. Here, we present novel information using cutting-edge technologies in animal models to dissect out the mechanisms by which early-life adversity provokes dysregulation of the complex interactions of stress and reward circuitries. We propose that certain molecularly defined pathways within the reward circuitry are particularly susceptible to early-life adversity. We examine regions and pathways expressing the stress-sensitive peptide corticotropin-releasing factor (CRF), which has been identified in critical components of the reward circuitry and interacting stress circuits. Notably, CRF is strongly modulated by early-life adversity in several of these brain regions. Focusing on amygdala nuclei and their projections, we provide evidence suggesting that aberrant CRF expression and function may underlie augmented connectivity of the nucleus accumbens with fear/anxiety regions, disrupting the function of this critical locus of pleasure and reward.


Assuntos
Hormônio Liberador da Corticotropina , Recompensa , Adolescente , Tonsila do Cerebelo/metabolismo , Anedonia , Animais , Hormônio Liberador da Corticotropina/metabolismo , Humanos , Núcleo Accumbens/metabolismo
18.
Bio Protoc ; 10(15): e3699, 2020 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-33659365

RESUMO

Stress is crucial to the survival of an organism, but excessive stress can lead to psychological disorders including depression, anxiety, substance abuse, and suicidality. The prevailing notion is that chronic stress promotes adverse outcomes on brain and body health, whereas acute stressors are generally benign. Notably, acute events such mass shootings or natural disasters are now emerging as significant sources of cognitive and emotional problems including post-traumatic stress disorder (PTSD). These events are characterized by the simultaneous occurrence of physical, emotional, and social stresses, which last minutes to hours. Hence, there is a need to model such multiple concurrent acute stresses (MAS) to uncover the mechanisms by which they lead to profound adverse outcomes. The MAS paradigm described here involves simultaneously exposing a rodent to several different stressors including restraint, crowding, and jostling alongside peers in a brightly lit and very noisy environment. Moreover, the MAS paradigm can be used once or imposed repeatedly to emulate complex, repeated modern life stresses, advancing our mechanistic understanding of consequent mental and cognitive impairments.

19.
Neurobiol Dis ; 132: 104586, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31470103

RESUMO

The effects of prolonged physical training on memory performance and underlying presynaptic mechanisms were investigated in old C57BL/6 mice. Training via voluntary running wheels was initiated at 16 months of age and continued for 5 months (1 h per day, 5 days per week), followed by testing of learning and memory functions and counting of presynaptic puncta and cholinergic inputs in the hippocampus. Trained old mice were compared to their age-matched sedentary controls and adult controls. This training strategy improved hippocampal-dependent spatial memory function tested via a novel location task, and enhanced memory was accompanied by restored presynaptic puncta and cholinergic fibers in area CA1 and DG of the hippocampus in old mice. Particularly, the training selectively affected presynaptic vesicle protein synaptophysin but not growth associated protein GAP-43, and the increased number of synaptophysin puncta positively correlates with improved memory performance. To better understand the neurochemical mechanisms by which prolonged physical training protects against aging-related memory deficits, the cholinergic inputs to the hippocampus were compared among the three groups of mice and correlated with memory performance. While the running prevented age-related loss of cholinergic inputs, it has limited impact on the projection source cells in the medial septum-diagonal band (MS-DB). Importantly, cholinergic fibers in area CA1 and DG positively correlated with spatial memory function. These data suggest that the preservation of presynaptic inputs, particularly those involved in the integrity of memory performance, contributes critically to the beneficial effects of physical running initiated at an older age.


Assuntos
Neurônios Colinérgicos/citologia , Condicionamento Físico Animal/fisiologia , Terminações Pré-Sinápticas/metabolismo , Memória Espacial/fisiologia , Sinaptofisina/metabolismo , Envelhecimento , Animais , Hipocampo/fisiologia , Camundongos , Camundongos Endogâmicos C57BL
20.
J Comp Neurol ; 527(15): 2474-2487, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30861133

RESUMO

Corticotropin-releasing hormone (CRH) is an essential, evolutionarily-conserved stress neuropeptide. In addition to hypothalamus, CRH is expressed in brain regions including amygdala and hippocampus where it plays crucial roles in modulating the function of circuits underlying emotion and cognition. CRH+ fibers are found in nucleus accumbens (NAc), where CRH modulates reward/motivation behaviors. CRH actions in NAc may vary by the individual's stress history, suggesting roles for CRH in neuroplasticity and adaptation of the reward circuitry. However, the origin and extent of CRH+ inputs to NAc are incompletely understood. We employed viral genetic approaches to map both global and CRH+ projection sources to NAc in mice. We injected into NAc variants of a new designer adeno-associated virus that permits robust retrograde access to NAc-afferent projection neurons. Cre-dependent viruses injected into CRH-Cre mice enabled selective mapping of CRH+ afferents. We employed anterograde AAV1-directed axonal tracing to verify NAc CRH+ fiber projections and established the identity of genetic reporter-labeled cells via validated antisera against native CRH. We quantified the relative contribution of CRH+ neurons to total NAc-directed projections. Combined retrograde and anterograde tracing identified the paraventricular nucleus of the thalamus, bed nucleus of stria terminalis, basolateral amygdala, and medial prefrontal cortex as principal sources of CRH+ projections to NAc. CRH+ NAc afferents were selectively enriched in NAc-projecting brain regions involved in diverse aspects of the sensing, processing and memory of emotionally salient events. These findings suggest multiple, complex potential roles for the molecularly-defined, CRH-dependent circuit in modulation of reward and motivation behaviors.


Assuntos
Hormônio Liberador da Corticotropina/metabolismo , Vias Neurais/citologia , Vias Neurais/metabolismo , Núcleo Accumbens/citologia , Núcleo Accumbens/metabolismo , Animais , Dependovirus , Feminino , Genes Reporter , Técnicas Genéticas , Vetores Genéticos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Angústia Psicológica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...